Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Shuu Tsukiyama
Xem chi tiết
Ngũ Anh Tuấn
Xem chi tiết
Bùi Minh Quân
Xem chi tiết
Minh Do
Xem chi tiết
Phạm Gia Hưng
Xem chi tiết
Thắng
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 1 2022 lúc 14:28

Ta có đánh giá sau:

\(\dfrac{a^3}{\left(1-a\right)^2}\ge\dfrac{4a-1}{4}\)

Thật vậy, BĐT tương đương:

\(4a^3-\left(4a-1\right)\left(1-a\right)^2\ge0\)

\(\Leftrightarrow9a^2-6a+1\ge0\)

\(\Leftrightarrow\left(3a-1\right)^2\ge0\) (luôn đúng)

Tương tự: \(\dfrac{b^3}{\left(1-b\right)^2}\ge\dfrac{4b-1}{4}\) ; \(\dfrac{c^3}{\left(1-c\right)^2}\ge\dfrac{4c-1}{4}\)

Cộng vế:

\(P\ge\dfrac{4\left(a+b+c\right)-3}{4}=\dfrac{1}{4}\)

\(P_{min}=\dfrac{1}{4}\) khi \(a=b=c=\dfrac{1}{3}\)

Tổ Chức Akatsuki
Xem chi tiết
Khoa Nguyễn Đăng
Xem chi tiết
zZz Cool Kid_new zZz
21 tháng 6 2020 lúc 10:56

\(B=\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\)

\(\ge3\sqrt[3]{\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)

Dễ có:\(\left(1+a\right)\left(1+b\right)\left(1+c\right)\le\left(\frac{3+a+b+c}{3}\right)^3\le8\)

Khi đó \(B\ge\frac{3}{2}\)

Đẳng thức xảy ra tại a=b=c=1

Khách vãng lai đã xóa
lmeo
Xem chi tiết
Yeutoanhoc
2 tháng 6 2021 lúc 21:07

`P=a+b+c+1/a+1/b+1/c`

`=a+1/(9a)+b+1/(9b)+c+1/(9c)+8/9(1/a+1/b+1/c)`

Áp dụng BĐT cosi:

`a+1/(9a)>=2/3`

`b+1/(9b)>=2/3

`c+1/(9c)>=2/3`

Áp dụng BĐT cosi schwart

`1/a+1/b+1/c>=9/(a+b+c)>=9`

`<=>8/9(1/a+1/b+1/c)>=8`

`=>P>=2/3+2/3+2/3+8=10`

Dấu "=" xảy ra khi `a=b=c=1/3`

Yeutoanhoc
2 tháng 6 2021 lúc 21:09

Nãy ghi nhầm :v

`P=a+b+c+1/a+1/b+1/c`

`=a+1/(9a)+b+1/(9b)+c+1/(9c)+8/9(1/a+1/b+1/c)`

Áp dụng BĐT cosi:

`a+1/(9a)>=2/3`

`b+1/(9b)>=2/3`

`c+1/(9c)>=2/3`

Áp dụng BĐT cosi schwart

`1/a+1/b+1/c>=9/(a+b+c)>=9`

`<=>8/9(1/a+1/b+1/c)>=8`

`=>P>=2/3+2/3+2/3+8=10`

Dấu "=" xảy ra khi `a=b=c=1/3`