Những câu hỏi liên quan
JinJin Chobi
Xem chi tiết
Phạm Tuấn Kiệt
Xem chi tiết
Users
Xem chi tiết
Nguyen My Van
25 tháng 5 2022 lúc 14:58

Vì \(BAC=60^o\Rightarrow ABH=30^o\Rightarrow AH=\dfrac{AB}{2}\left(1\right)\)

Áp dụng định lý Pytago ta có:

\(AB^2=AH^2+BH^2\) và \(BC^2=BH^2+HC^2\)

\(\Rightarrow BC^2=AB^2-AH^2+AC^2-2.AC.AH+AH^2\)

\(\Rightarrow BC^2=AB^2+AC^2-2AH.AC\left(2\right)\)

Từ (1) và (2) \(\Rightarrowđfcm\)

Bình luận (5)
Nguyễn Thị Quyên
Xem chi tiết
Nguyễn Mai Anh
Xem chi tiết
Nguyễn Phương Uyên
22 tháng 3 2020 lúc 11:38

A B C H

kẻ BH _|_ AC

xét tam giác ABH vuông tại H => ^ABH + ^BAH = 90 (đl)

^BAH = 60 (Gt)

=> ^ABH = 30; xét tam giác ABH vuông tại H

=> AH = AB/2 (đl)

=> AB = 2AH                  (1)

Tam giác ABH vuông tại H => HA^2 + HB^2 = AB^2 (pytago)

=> BH^2 = AB^2 - AH^2         (2)

xét tam giác BHC vuông tại H => BC^2 = HB^2 + HC^2 (pytago)

có HC = AC - AH

=> BC^2 = HB^2 + (AC - AH)^2 

=> BC^2 = HB^2 + AC^2 - 2AH.AC + AH^2 và (1)(2)

=> BC^2 = AB^2 - AH^2 + AC^2 - AB.AC + AH^2

=> BC^2 = AB^2 + AC^2 - AB.AC

Bình luận (0)
 Khách vãng lai đã xóa
JinJin Chobi
Xem chi tiết
JinJin Chobi
Xem chi tiết
Trần Huy Hoàng
Xem chi tiết
Thanh Tùng DZ
6 tháng 1 2018 lúc 20:23

A B C H 60 độ

Kẻ CH \(\perp\)AB tại H ( H \(\in\)AB ) và HA + HB = AB

Xét \(\Delta\)AHC vuông tại H có : \(\widehat{A}\)\(60^o\)\(\Rightarrow\widehat{ACH}=30^o\)

Ta chứng minh được : AH = \(\frac{1}{2}AC\)( cạnh đối diện góc 30 độ bằng 1/2 cạnh huyền )

Áp dụng đính lí Py-ta-go vào tam giác vuông AHC có :

AC2 = HA2 + HC2

\(\Rightarrow\)HC2 = AC2 - HA2

hay HC2 = AC2 - \(\left(\frac{AC}{2}\right)^2\)\(\frac{3}{4}AC^2\)

Áp dụng định lí Py-ta-go BHC có :

BC2 = CH2 + HB2 = \(\frac{3}{4}AC^2+\left(AB-AH\right)^2\)

\(=\frac{3}{4}AC^2+\left(AB-\frac{1}{2}AC\right)^2\)

\(=\frac{3}{4}AC^2+AB^2-2AB.\frac{AC}{2}+\left(\frac{1}{2}AC\right)^2\)

\(=AC^2+AB^2-AB.AC\)

Bình luận (0)
zZz Cool Kid_new zZz
25 tháng 6 2019 lúc 16:10

Câu hỏi của nguyen thi bao tien - Toán lớp 7 - Học toán với OnlineMath:Anh tham khảo ở đây.

Bình luận (0)
Nguyễn Hoàng Tú
Xem chi tiết