giải phương trình \(x-\frac{x+1}{3}=\frac{2x+1}{5}\)
Giải phương trình sau: \(x+\frac{2x+\frac{x-1}{5}}{3}=1-\frac{3x-\frac{1-2x}{3}}{5}\)
\(x+\frac{2x+\frac{x-1}{5}}{3}=1-\frac{3x-\frac{1-2x}{3}}{5}\)
\(\Leftrightarrow15x+5.\left(2x+\frac{x-1}{5}\right)=15-3.\left(3x-\frac{1-2x}{3}\right)\)( Cái này là nhân 2 vế cho 15 nên ra thế này)
\(\Leftrightarrow15x+10x+x-1=15-9x+1-2x\)
<=>26x-1=16-11x
<=>37x=17
<=>x=17/37
giải bất phương trình
a.\(\frac{2x-3}{35}+\frac{x\left(x-2\right)}{7}>\frac{x^2}{7}-\frac{2x-3}{5}\)
b.\(\frac{6x+1}{18}+\frac{x+3}{12}\le\frac{5x+3}{6}+\frac{12-5x}{9}\)
2.Giải phương trình
b.\(\frac{\left|2x-1\right|}{x-1}+1=\frac{1}{x-1}\)
Cái bài đầu giải BPT bn ghi cái dj ak ,mik cx k hỉu nữa
V mik giải bài 2 nghen, sửa lại đề bài đầu rồi mik giải cho
\(3x-3=|2x+1|\)
Điều kiện: \(3x-3\ge0\Leftrightarrow3x\ge3\Leftrightarrow x\ge1\)
\(\Leftrightarrow\orbr{\begin{cases}2x+1=3x-3\\2x+1=-3x+3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x-3x=-1-3\\2x+3x=-1+3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}-x=-3\\5x=2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\left(n\right)\\x=\frac{2}{5}\left(l\right)\end{cases}}}\)
Vậy S={3}
Cài đề câu b ,bn xem lại nhé!
\(\frac{2x-3}{35}+\frac{x\left(x-2\right)}{7}>\frac{x^2}{7}-\frac{2x-3}{5}\)
\(\Leftrightarrow\frac{2x-3}{35}+\frac{5x\left(x-2\right)}{35}-\frac{5x^2}{35}+\frac{7\left(2x-3\right)}{35}>0\)
\(\Leftrightarrow2x-3+5x\left(x-2\right)-5x^2+7\left(2x-3\right)>0\)
\(\Leftrightarrow2x-3+5x^2-10x-5x^2+14x-21>0\)
\(\Leftrightarrow6x-24>0\)
\(\Leftrightarrow x>4\)
VẬY TẬP NGHIỆM CỦA BẤT PHƯƠNG TRÌNH LÀ : S = { \(x\text{\x}>4\)}
\(\frac{6x+1}{18}+\frac{x+3}{12}\le\frac{5x+3}{6}+\frac{12-5x}{9}\)
\(\Leftrightarrow\frac{6\left(6x+1\right)}{108}+\frac{9\left(x+3\right)}{108}\le\frac{18\left(5x+3\right)}{108}+\frac{12\left(12-5x\right)}{108}\)
\(\Leftrightarrow36x+6+9x+27\le90x+54+144-60x\)
\(\Leftrightarrow36x+6+9x+27-90x-54-144+60x\le0\)
\(\Leftrightarrow15x-165\le0\)
\(\Leftrightarrow x\le11\)
VẬY TẬP NGHIỆM CỦA BẤT PHƯƠNG trình ..........
tk mk nka !!! chúc bạn học tốt !!!
giải phương trình sau: \(\frac{4}{x^2+2x-3}=\frac{2x-5}{x+3}-\frac{2x}{x-1}\)
\(\frac{4}{x^2+2x-3}=\frac{2x-5}{x+3}-\frac{2x}{x-1}\) \(\left(ĐKXĐ:x\ne1;-3\right)\)
\(\Leftrightarrow\frac{4}{\left(x^2-x\right)+\left(3x-3\right)}=\frac{2x-5}{x+3}-\frac{2x}{x-1}\)
\(\Leftrightarrow\frac{4}{\left(x+3\right)\left(x-1\right)}=\frac{\left(2x-5\right)\left(x-1\right)}{\left(x+3\right)\left(x-1\right)}-\frac{2x\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}\)
\(\Rightarrow4=\left(2x-5\right)\left(x-1\right)-2x\left(x+3\right)\)
\(\Leftrightarrow4=2x^2-2x-5x+5-2x^2-6x\)
\(\Leftrightarrow-13x+5=4\)
\(\Leftrightarrow-13x=-1\)
\(\Leftrightarrow x=\frac{1}{13}\left(tm\right)\)
Vậy phương trình có tập nghiệm \(S=\left\{\frac{1}{13}\right\}\)
a,Giải phương trình sau : (2x + 3)(x-5)=42 +6x
b, Gải phương trình sau: \(\frac{x}{2x-6}-\frac{x}{2x+2}=\frac{2x}{\left(x+1\right)\left(x-3\right)}\)
c,Gải bất phương trình sau và biểu diễn nghiệm trên trục số : \(\frac{12x+1}{12}\le\frac{9x+1}{3}-\frac{8x+1}{4}\)
1) Giải phương trình
a) \(\frac{x+5}{3x-6}-\frac{1}{2}=\frac{2x-3}{2x-4}\)
b) /7-2x/=x-3 với\(\) \(x\ge\frac{7}{2}\)
2) Giải bất phương trình
\(\frac{x-1}{2}+\frac{x-2}{3}+\frac{x-3}{4}>\frac{x-4}{5}+\frac{x-5}{6}\)
1)
a) \(\frac{x+5}{3x-6}-\frac{1}{2}=\frac{2x-3}{2x-4}< =>\frac{2\left(x+5\right)}{2\left(3x-6\right)}-\frac{3x-6}{2\left(3x-6\right)}=\frac{3\left(2x-3\right)}{3\left(2x-4\right)}.\)
(đk:x khác \(\frac{1}{2}\))
\(\frac{2x+10}{6x-12}-\frac{3x-6}{6x-12}=\frac{6x-9}{6x-12}< =>2x+10-3x+6=6x-9< =>x=\frac{25}{7}\)
Vậy x=\(\frac{25}{7}\)
b) /7-2x/=x-3 \(x\ge\frac{7}{2}\)
(đk \(x\ge3,\frac{7}{2}< =>x\ge\frac{7}{2}\))
\(\Rightarrow\orbr{\begin{cases}7-2x=x-3\\7-2x=-\left(x-3\right)\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{10}{3}\left(< \frac{7}{2}\Rightarrow l\right)\\x=4\left(tm\right)\end{cases}}}\)
Vậy x=4
2)
\(\frac{x-1}{2}+\frac{x-2}{3}+\frac{x-3}{4}>\frac{x-4}{5}+\frac{x-5}{6}\)
\(\Leftrightarrow\frac{30\left(x-1\right)}{60}+\frac{20\left(x-2\right)}{60}+\frac{15\left(x-3\right)}{60}-\frac{12\left(x-4\right)}{60}-\frac{10\left(x-5\right)}{60}>0\)
\(\Leftrightarrow30x-30+20x-40+15x-45-12x+48-10x+50>0\Leftrightarrow43x-17>0\Leftrightarrow x>\frac{17}{43}\)
Giải phương trình
\(\frac{x+5}{3x-6}-\frac{1}{2}=\frac{2x-3}{2x-4}\)\(\frac{x+5}{3x-6}-\frac{1}{2}=\frac{2x-3}{2x-4}\)
\(\frac{3x-1}{x-1}-\frac{2x+5}{x+3}+\frac{4}{2x^2+2-3}=1\)1
giải phương trình trên
Giải các phương trình sau:
d.
\(\frac{x}{3} + \frac{{2x + 1}}{6} = \frac{{4\left( {x - 2} \right)}}{5}\)
\(\frac{x}{3} + \frac{{2x + 1}}{6} = \frac{{4\left( {x - 2} \right)}}{5}\)
\(\frac{{10x}}{{3.10}} + \frac{{\left( {2x + 1} \right).5}}{{6.5}} = \frac{{6.4\left( {x - 2} \right)}}{{5.6}}\)
\(\frac{{10x}}{{30}} + \frac{{10x + 5}}{{30}} = \frac{{24x - 48}}{{30}}\)
\(10x + 10x + 5 = 24x - 48\)
\(10x + 10x - 24x = - 5 - 48\)
\( - 4x = - 53\)
\(x = \left( { - 53} \right):\left( { - 4} \right)\)
\(x = \frac{{53}}{4}\)
Vậy phương trình có nghiệm là \(x = \frac{{53}}{4}\).
Giải hệ phương trình:
\(\hept{\begin{cases}\frac{4}{x+y-1}-\frac{5}{2x-y+3}=\frac{5}{2}\\\frac{3}{x+y-1}+\frac{1}{2x-y+3}=\frac{7}{5}\end{cases}}\)
cậu cứ nhân 5 vào phương trình (2)
cộng 2 phương trình lại cậu sẽ ra được x+y-1=2
thế cái vừa tìm được vào 1 trong 2 phương trình thi sẽ ra thêm một phương trình 2x-y=-13
giải hệ rồi tìm được x và y
Giải Phương trình
a, \(\frac{x+4}{2x^2-5x+2}+\frac{x+1}{2x^2-7x+3}=\frac{2x+5}{2x^2-7x+3}\)
b, \(\frac{x^2}{x^2+2x+2}+\frac{x^2}{x^2-2x+2}-\frac{4.\left(x^2-5\right)}{x^4+4}=\frac{322}{65}\)
c, \(\frac{1}{x-1}+\frac{2x^2-5}{x^3-1}=\frac{4}{x^2+x+1}\)
Trình bày cách làm nữa nha