Tìm các số nguyên x,y biết x . y = x = y
Bài 1, Tìm giá trị nguyên x biết, E= -5-x/x-2 đạt giá trị nguyên
Bài 2, Tìm x,y thuộc N biết, 25-y^2=8x-2012^2
Bài 3, a) Tìm các số nguyên tố x,y sao cho: 51x+26y=2000
b) Tìm STN x,y biết: 7.(x-2004)^2=23-y^2
c) Tìm x,y nguyên: xy+3x-y=6
d) Tìm mọi số nguyên tố thỏa mãn: x^2+2y^2=1. ai làm nhanh hộ mk tich nha. cần mai luôn rồi. Xin trân trọng cảm ơn!
Bài 1:
Để E nguyên thì \(x+5⋮x-2\)
\(\Leftrightarrow x-2\in\left\{1;-1;7;-7\right\}\)
hay \(x\in\left\{3;1;9;-5\right\}\)
giúp mình với ạ cần luôn nhá. mk sẽ tick cho!
BÀi 1:Tìm các cặp số nguyên x,y biết 2x2+y2+xy=2(x+y)
Bài 2:Tìm các cặp số nguyên dương x,y biết x2+y2=3(x+y)
Bài 2: Giả sử tồn tại x,y nguyên dương t/m đề, khi đó pt cho tương đương:
\(4x^2+4y^2-12x-12y=0\Leftrightarrow\left(2x+3\right)^2+\left(2y+3\right)^2=18\)
Ta thấy: \(18=9+9=3^2+3^2\). Mà x,y thuộc Z+ nên \(\hept{\begin{cases}2x+3=3\\2y+3=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\y=0\end{cases}}\)
Vậy cặp nghiệm nguyên t/m pt là (x;y) = (0;0)
Làm lại bài 2 :v (P/S: Bạn bỏ bài kia đi nhé)
\(4x^2+4y^2-12x-12y=0\Leftrightarrow\left(2x-3\right)^2+\left(2y-3\right)^2=18\)
Ta thấy: \(18=9+9=3^2+3^2\). Mà x,y thuộc Z+ nên \(\hept{\begin{cases}2x-3=3\\2y-3=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=3\end{cases}}\)
Vậy (x;y) = (3;3)
a) tìm các số nguyên x y biết
(x-3)(xy-1)=7
b)tìm các số nguyên x y biết
y<0 và (x-3)×y=5
c)Tìm các Ư của A biết
A=1-4+5-8+9-12+...+27-30
d) tìm số nguyên x biết
(X-10)+(x-9)+(x-8)+...+(x-1)=-2015
Tìm các số nguyên x; y biết rằng:
a) xy + x + y = 2
b) (x + 1).y + 2 = -5 , (x < y)
a) \(xy+x+y=2\)
\(xy+x+y+1=2+1\)
\(\left(xy+x\right)+\left(y+1\right)=3\)
\(x\left(y+1\right)+\left(y+1\right)=3\)
\(\left(y+1\right)\left(x+1\right)=3\)
\(\Rightarrow\left\{{}\begin{matrix}x+1\in\left\{-3;-1;1;3\right\}\\y+1\in\left\{-1;-3;3;1\right\}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x\in\left\{-4;-2;0;2\right\}\\y\in\left\{-2;-4;2;0\right\}\end{matrix}\right.\)
Vậy ta tìm được các cặp giá trị \(\left(x;y\right)\) thỏa mãn yêu cầu:
\(\left(-4;-2\right);\left(-2;-4\right);\left(0;2\right);\left(2;0\right)\)
b) \(\left(x+1\right).y+2=-5\)
\(\left(x+1\right).y=-5-2\)
\(\left(x+1\right).y=-7\)
\(\Rightarrow\left\{{}\begin{matrix}x+1\in\left\{-7;-1;1;7\right\}\\y\in\left\{1;7;-7;-1\right\}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x\in\left\{-8;-2;0;6\right\}\\y\in\left\{1;7;-7;-1\right\}\end{matrix}\right.\)
Mà \(x< y\)
\(\Rightarrow\left\{{}\begin{matrix}x\in\left\{-8;-2\right\}\\y\in\left\{1;7\right\}\end{matrix}\right.\)
Vậy ta tìm được các cặp giá trị \(\left(x;y\right)\) thỏa mãn yêu cầu:
\(\left(-8;1\right);\left(-2;7\right)\)
Bài 1.Tìm x,y,z: a.x/5 = -12/20 ; b.2/y = 11/-66 ; c.-3/6 = x/-2 = -18/y = -z/24
Bài 2.Tìm các số nguyên x và y biết : x<0<y và:
-2/x = y/3
Bài 3.Tìm các số nguyên x và y biết x - y = 4 và:
x-3/y-2 = 3/2
Bài 4.Viết dạng chung của tất cả các phân số bằng phân số 21/28
a, \(xy\) = \(x\) - y
\(xy\) + y = \(x\)
y.(\(x\) + 1) = \(x\)
y = \(\dfrac{x}{x+1}\) (đk \(x\) ≠ -1)
y nguyên ⇔ \(x\) ⋮ \(x\) + 1
⇒ \(x\) + 1 - 1 ⋮ \(x\) + 1
1 ⋮ \(x\) + 1
\(x\) + 1 \(\in\) Ư(1) = {-1; 1}
lập bảng ta có:
\(x+1\) | -1 | 1 |
\(x\) | -2 | 0 |
y = \(\dfrac{x}{x+1}\) | 2 | 0 |
(\(x\);y) | (-2;2) | (0;0) |
Theo bảng trên ta có các cặp \(x\); y nguyên thỏa mãn đề bài là:
(\(x\); y) = (-2; 2); (0; 0)
b, \(x\).(y + 2) + y = 1
\(x.\left(y+2\right)\) + y + 2 = 1 + 2
(y + 2).(\(x\) + 1) = 3
Ư(3) = {-3; -1; 1; 3}
Lập bảng ta có:
\(x\) + 1 | -3 | -1 | 1 | 3 |
\(x\) | -4 | -2 | 0 | 2 |
y + 2 | -1 | -3 | 3 | 1 |
y | -3 | -5 | 1 | -1 |
Theo bảng trên ta có các cặp \(x\); y nguyên thỏa mãn đề bài là:
(\(x\); y) = (-4; -3); (-2; -5); (0; 1); (2 ; - 1)
Tìm các số nguyên x,y biết:(x 3)(1-x)=/y/
Tìm các số nguyên x,y biết:(x+3)(1-x)=|y|
Lời giải:
Vì $|y|\geq 0$ với mọi $y$ nên:
$(x+3)(1-x)=|y|\geq 0$. Khi đó sẽ có 2 TH xảy ra:
TH1: $x+3\geq 0; 1-x\geq 0$
$\Rightarrow 1\geq x\geq -3$
Mà $x$ nguyên nên $x\in \left\{1; 0; -1; -2; -3\right\}$
Nếu $x=1$ thì: $|y|=0\Rightarrow y=0$
Nếu $x=0$ thì $|y|=3\Rightarrow y=\pm 3$
Nếu $x=-1$ thì $|y|=4\Rightarrow y=\pm 4$
Nếu $x=-2$ thì $|y|=3\Rightarrow y=\pm 3$
Nếu $x=-3$ thì $|y|=0\Rightarrow y=0$
TH2: $x+3\leq 0; 1-x\leq 0\Rightarrow x\geq 1$ và $x\leq -3$ (vô lý) - loại.
Tìm các số nguyên x,y biết
x=6.y; |x|-|y|=25