(a-b-c)-(a-c)2-2ab+2ab
a^2+b^2^-c^2+2ab
a^2+b^2^+c^2+2ab
a^2+b^2-c^2+2ab
=(a^2+2ab+b^2)-c^2
=(a+b)^2-c^2
=(a+b-c)(a+b+c)
a^2+b^2+c^2+2ab
=(a^2+2ab+b^2)+c^2
=(a+b)^2+c^2
=(a+b+c)^2-2(a+b).c
=(a+b+c)^2-2ac-2bc
đến đây hình như ko phân tích đc
cho ba số a,b,c đôi một khác nhau thoả mãn (a+b+c)^2=a^2+b^2+c^2 tính giá trị P=2bc/a^2+2bc+2ca/b^2+2ca+2ab/c^2+2ab
\(\left(a+b+c\right)^2=a^2+b^2+c^2\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=a^2+b^2+c^2\Leftrightarrow ab+bc+ca=0\)
-Ta có hằng đẳng thức: \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
\(P=\dfrac{2bc}{a^2}+\dfrac{2ca}{b^2}+\dfrac{2ab}{c^2}+2bc+2ca+2ab\)
\(=\dfrac{2bc}{a^2}+\dfrac{2ca}{b^2}+\dfrac{2ab}{c^2}=\dfrac{2\left(b^3c^3+c^3a^3+a^3b^3\right)}{a^2b^2c^2}=\dfrac{2.\left(ab+bc+ca\right)\left(b^2c^2+c^2a^2+a^2b^2-ab^2c-abc^2-a^2bc\right)}{a^2b^2c^2}=\dfrac{2.0.\left(b^2c^2+c^2a^2+a^2b^2-ab^2c-abc^2-a^2bc\right)}{a^2b^2c^2}=0\)
Tìm số nguyên a, b sao cho:
a)2ab+a+4b=5
b)6a-b+2ab=7
c)3a^2-3ab-2a=6-2b
d)2ab+a+b=2
\(\frac{a^2+b^2-c^2+2ab}{a^2-b^2+c^2+2ab}\)
Rút gọn biểu thức
Rút gọn:
\(a,A=\sqrt{9\left(a+b\right)}-2\sqrt{16\left(a+b\right)}-3\sqrt{a+b}+\frac{1}{5}\sqrt{25\left(a+b\right)}\)
\(b,B=\frac{2ab\sqrt{a}}{\sqrt{a}+\sqrt{b}}+\frac{2ab\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)
\(c,C=\frac{2ab}{a+\sqrt{ab}}+\frac{2ab}{b+\sqrt{ab}}\)
\(d,D=\frac{\frac{2ab\sqrt{a}}{\sqrt{a}+\sqrt{b}}+\frac{2ab\sqrt{b}}{\sqrt{a}+\sqrt{b}}}{\frac{2ab}{a+\sqrt{ab}}+\frac{2ab}{b+\sqrt{ab}}}\)
Giúp mình với.Thanks
cho anh tao đê
a,A= -7\(\sqrt{a+b}\)
C/M: (ax^2 - bx^2)^4 + (2ab+bx^2)^4 + (2ab+a^2)^4 = 2(a^2+ab+b^2)
Cho a,b,c > 0 và a+b+c <1. Chứng minh rằng: \(\dfrac{1}{a^2+2ab}+\dfrac{1}{b^2+2ac}+\dfrac{1}{c^2+2ab}\ge9\)
\(a+b+c\le1\) hoặc \(a+b+c=1\) nhá
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(VT\ge\dfrac{\left(1+1+1\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}=\dfrac{9}{\left(a+b+c\right)^2}=9\)
Đẳng thức xảy ra khi ..........
Rút gọn:
C=\(\dfrac{a^2+b^2-c^2+2ab}{a+b+c}\)
D=\(\dfrac{a^2+b^2-c^2+2ab}{a^2-b^2+c^2+2ac}\)
\(C=\dfrac{a^2+b^2-c^2+2ab}{a+b+c}\)
\(C=\dfrac{\left(a^2+2ab+b^2\right)-c^2}{a+b+c}\)
\(C=\dfrac{\left(a+b\right)^2-c^2}{a+b+c}\)
\(C=\dfrac{\left(a+b-c\right)\left(a+b+c\right)}{a+b+c}\)
\(C=a+b-c\)
a,\(C=\dfrac{a^2+b^2-c^2+2ab}{a+b+c}=\dfrac{\left(a+b\right)^2-c^2}{a+b+c}=\dfrac{\left(a+b-c\right)\left(a+b+c\right)}{a+b+c}=a+b-c\)b, \(D=\dfrac{a^2+b^2-c^2+2ab}{a^2-b^2+c^2+2ac}=\dfrac{\left(a+b\right)^2-c^2}{\left(a+c\right)^2-b^2}=\dfrac{\left(a+b-c\right)\left(a+b+c\right)}{\left(a-b+c\right)\left(a+b+c\right)}=\dfrac{a+b-c}{a-b+c}\)
\(D=\dfrac{a^2+b^2-c^2+2ab}{a^2-b^2+c^2+2ac}\)
\(D=\dfrac{\left(a^2+2ab+b^2\right)-c^2}{\left(a^2+2ac+c^2\right)-b^2}\)
\(D=\dfrac{\left(a+b\right)^2-c^2}{\left(a+c\right)^2-b^2}\)
\(D=\dfrac{\left(a+b-c\right)\left(a+b+c\right)}{\left(a+c-b\right)\left(a+c+b\right)}\)
\(D=\dfrac{a+b-c}{a+c-b}\)