Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
๖Fly༉Donutღღ
Xem chi tiết
Lê Minh Vũ
8 tháng 7 2017 lúc 14:54

GTNN là 2015 nha  bạn

Nguyễn Huệ Lam
8 tháng 7 2017 lúc 14:59

\(B=2x^2+y^2+2xy+6x+2y+2015\)

\(=x^2+y^2+1+2xy+2y+2x+x^2+4x+4+2011\)

\(=\left(x^2+y^2+1+2xy+2y+2x\right)+\left(x^2+4x+4\right)+2011\)

\(=\left(x+y+1\right)^2+\left(x+2\right)^2+2011\)

Vì \(\left(x+y+1\right)^2+\left(x+2\right)^2\ge0\)nên \(\left(x+y+1\right)^2+\left(x+2\right)^2+2011\ge2011\)

Vậy \(MinB=2011\Leftrightarrow\hept{\begin{cases}\left(x+y+1\right)^2=0\\\left(x+2\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y+1=0\\x+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2\\y=1\end{cases}}\)

Nguyễn Huệ Lam
8 tháng 7 2017 lúc 16:19

Min là giá trị nhỏ nhất mà, không biết àk

Chu Bá Hiếu
Xem chi tiết
Trà My
17 tháng 2 2017 lúc 16:25

\(A=2x^2+y^2+2xy-6x-2y+10\)

<=>\(A=y^2+2y\left(x-1\right)+2x^2-6x+10\)

<=>\(A=y^2+2y\left(x-1\right)+\left(x^2-2x+1\right)+\left(x^2-4x+4\right)+5\)

<=>\(A=y^2+2y\left(x-1\right)+\left(x-1\right)^2+\left(x-2\right)^2+5\)

<=>\(A=\left(y+x-1\right)^2+\left(x-2\right)^2+5\ge5\)

=> A đạt giá trị nhỏ nhất là 5 khi \(\hept{\begin{cases}\left(y+x-1\right)^2=0\\\left(x-2\right)^2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y+x-1=0\\x-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=-1\end{cases}}\)

Quỳnh Nguyễn
Xem chi tiết
Akai Haruma
29 tháng 11 2023 lúc 22:00

Lời giải:

$A=2x^2+y^2+2xy+2x-2y+2023$

$=(x^2+2xy+y^2)+x^2+2x-2y+2023$

$=(x+y)^2-2(x+y)+x^2+4x+2023$

$=(x+y)^2-2(x+y)+1+(x^2+4x+4)+2018$

$=(x+y-1)^2+(x+2)^2+2018\geq 0+0+2018=2018$

Vậy GTNN của $A$ là $2018$. Giá trị này đạt tại $x+y-1=x+2=0$

$\Leftrightarrow x=-2; y=3$

Alex Arrmanto Ngọc
Xem chi tiết
Thu Thao
16 tháng 1 2021 lúc 10:17

\(F=2x^2+y^2+2y\left(x+1\right)+\left(x+1\right)^2-x^2-2x-1-2x+2\)

\(=\left(y+x+1\right)^2+x^2-4x+1\)

\(=\left(x+y+1\right)^2+\left(x-2\right)^2-3\ge-3\forall x;y\)

=> \(MinF=-3\Leftrightarrow\left\{{}\begin{matrix}x+y+1=0\\x-2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-3\end{matrix}\right.\)

 

Ha Linh Trân
Xem chi tiết
tthnew
11 tháng 8 2019 lúc 16:53

Ta có: \(E=2x^2+2x\left(y+3\right)+2y^2+2020\)

\(=2\left(x^2+2.x.\frac{\left(y+3\right)}{2}+\frac{\left(y+3\right)^2}{4}\right)+2y^2+2020-\frac{\left(y+3\right)^2}{2}\)

\(=2\left(x+\frac{y+3}{2}\right)^2+\frac{3y^2-6y+4031}{2}\)

\(=2\left(x+\frac{y+3}{2}\right)^2+\frac{3\left(y-1\right)^2+4028}{2}\ge\frac{4028}{2}=2014\)

Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x=-\frac{y+3}{2}\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=1\end{matrix}\right.\)

Vậy...

Yurii
Xem chi tiết
Trần Thanh Phương
2 tháng 10 2018 lúc 15:07

a) \(A=x^2+6x+10\)

\(A=x^2+2\cdot x\cdot3+3^2+1\)

\(A=\left(x+3\right)^2+1\ge1\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x+3=0\Leftrightarrow x=-3\)

b) \(B=2x^2+y^2+2xy+4x+15\)

\(B=\left(x^2+2xy+y^2\right)+\left(x^2+2\cdot x\cdot2+2^2\right)+11\)

\(B=\left(x+y\right)^2+\left(x+2\right)^2+11\ge11\forall x;y\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y=0\\x+2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=2\\x=-2\end{cases}}\)

Nguyễn Mai Phương
Xem chi tiết
Trần Đức Thắng
17 tháng 8 2015 lúc 13:17

= x^2 - 2xy + y^2 + 2x - 2y + x^2 -  2x + 12 

= ( x-  y)^2  + 2 ( x - y)  + x^2 - 2x + 1 + 11 

= ( x-  y)^2 + 2 ( x-  y ) + 1 + (x - 1 )^2 + 10 

= ( x - y + 1 )^2 + ( x- 1 )^2 + 10 

Vậy GTNN là 10 khi x - 1 = 0 và x - y + 1 =  0 

=> x = 1 và 2 - y  = 0 

=>x = 1 và y = 2 

 

Nguyễn Võ Văn Hùng
Xem chi tiết
Nguyễn Huyền Anh
3 tháng 2 2017 lúc 21:55

(x2+2xy+y2)-2(x+y)+1+(x2-4x+4)+5

=(x+y-1)2+(x-2)2+5>=5

Dennis
3 tháng 2 2017 lúc 17:22

Bạn ơi đề k sai đúng hông?

Anh Kiên lớp 7 Lê
15 tháng 6 2022 lúc 21:39

2x^2+y^2+2xy-6x-2y+10

=(x+y+1)^2+(x-2)^2+5>=5

Amin=5 khi : x+y+1=0

               hoac  x-2=0

=>x=2 va y=-3

Explore The Game
Xem chi tiết