Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
pham trung thanh
Xem chi tiết
KAl(SO4)2·12H2O
23 tháng 11 2017 lúc 21:26

(x − 1)+ 6(x − 1) − 2=0

Tôi chỉ giải được thếy này thôi, đến đây tôi nghĩ bạn cũng đã hiểu.

Trần Bảo Khang
Xem chi tiết
Lê Tài Bảo Châu
17 tháng 11 2019 lúc 16:38

\(x^4-3x^3+2x^2-9x+9=0\)

\(\Leftrightarrow\left(x^4-2x^3-9x\right)-\left(x^3-2x^2-9\right)=0\)

\(\Leftrightarrow x\left(x^3-2x^2-9\right)-\left(x^3-2x^2-9\right)=0\)

\(\Leftrightarrow\left(x^3-2x^2-9\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[\left(x^3+x^2+3x\right)-\left(3x^2+3x+9\right)\right]\left(x-1\right)=0\)

\(\Leftrightarrow\left[x\left(x^2+x+3\right)-3\left(x^2+x+3\right)\right]\left(x-1\right)=0\)

\(\Leftrightarrow\left(x^2+x+3\right)\left(x-3\right)\left(x-1\right)=0\)(1)

Ta thấy \(x^2+x+3=x^2+2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+3\)

                                    \(=\left(x+\frac{1}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}>0;\forall x\)

 \(\Rightarrow\left(1\right)\)xảy ra \(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x-1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=3\\x=1\end{cases}}\)

Vậy \(x\in\left\{3;1\right\}\)

Khách vãng lai đã xóa
Nguyễn Việt Hoàng
17 tháng 11 2019 lúc 16:33

\(x^4-3x^3+2x^2-9x+9=0\)

\(\Leftrightarrow\left(x^4+9+6x^2\right)-\left(3x^3+9x\right)-4x^2=0\)

\(\Leftrightarrow\left(x^2+3\right)^2-3x\left(x^2+3\right)-4x^2=0\)

\(\Leftrightarrow\left(x^2+3\right)^2-4x\left(x^2+3\right)+x\left(x^2+3\right)-4x^2=0\)

\(\Leftrightarrow\left(x^2+3\right)\left(x^2+3-4x\right)+x\left(x^2+3-4x\right)=0\)

\(\Leftrightarrow\left(x^2+3-4x\right)\left(x^2+3+x\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)\left[\left(x+\frac{1}{2}\right)^2+\frac{11}{4}\right]=0\)

Vì \(\left(x^2+\frac{1}{2}\right)^2+\frac{11}{4}>0\)

\(\Rightarrow\left(x-1\right)\left(x-3\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=3\end{cases}}\)

Khách vãng lai đã xóa
Hoàng Nguyệt
Xem chi tiết
Hồng Phúc
7 tháng 8 2021 lúc 14:53

a, ĐK: \(x\le-1,x\ge3\)

\(pt\Leftrightarrow2\left(x^2-2x-3\right)+\sqrt{x^2-2x-3}-3=0\)

\(\Leftrightarrow\left(2\sqrt{x^2-2x-3}+3\right).\left(\sqrt{x^2-2x-3}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-2x-3}=-\dfrac{3}{2}\left(l\right)\\\sqrt{x^2-2x-3}=1\end{matrix}\right.\)

\(\Leftrightarrow x^2-2x-3=1\)

\(\Leftrightarrow x^2-2x-4=0\)

\(\Leftrightarrow x=1\pm\sqrt{5}\left(tm\right)\)

Hồng Phúc
7 tháng 8 2021 lúc 15:05

b, ĐK: \(-2\le x\le2\)

Đặt \(\sqrt{2+x}-2\sqrt{2-x}=t\Rightarrow t^2=10-3x-4\sqrt{4-x^2}\)

Khi đó phương trình tương đương:

\(3t-t^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=0\\t=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2+x}-2\sqrt{2-x}=0\\\sqrt{2+x}-2\sqrt{2-x}=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2+x=8-4x\\2+x=17-4x+12\sqrt{2-x}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{6}{5}\left(tm\right)\\5x-15=12\sqrt{2-x}\left(1\right)\end{matrix}\right.\)

Vì \(-2\le x\le2\Rightarrow5x-15< 0\Rightarrow\left(1\right)\) vô nghiệm

Vậy phương trình đã cho có nghiệm \(x=\dfrac{6}{5}\)

Hồng Phúc
7 tháng 8 2021 lúc 15:23

c, ĐK: \(0\le x\le9\)

Đặt \(\sqrt{9x-x^2}=t\left(0\le t\le\dfrac{9}{2}\right)\)

\(pt\Leftrightarrow9+2\sqrt{9x-x^2}=-x^2+9x+m\)

\(\Leftrightarrow-\left(-x^2+9x\right)+2\sqrt{9x-x^2}+9=m\)

\(\Leftrightarrow-t^2+2t+9=m\)

Khi \(m=9,pt\Leftrightarrow-t^2+2t=0\Leftrightarrow\left[{}\begin{matrix}t=0\\t=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}9x-x^2=0\\9x-x^2=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=9\left(tm\right)\\x=\dfrac{9\pm\sqrt{65}}{2}\left(tm\right)\end{matrix}\right.\)

Phương trình đã cho có nghiệm khi phương trình \(m=f\left(t\right)=-t^2+2t+9\) có nghiệm

\(\Leftrightarrow minf\left(t\right)\le m\le maxf\left(t\right)\)

\(\Leftrightarrow-\dfrac{9}{4}\le m\le10\)

Đoàn Thị Thu Hương
Xem chi tiết
Thầy Giáo Toán
9 tháng 9 2015 lúc 9:23

a. Phương trình tương đương với \(\left(x^2-2x-1\right)\left(x^2+2x+3\right)=0\leftrightarrow x=1\pm\sqrt{2}.\)

b. Nhân cả hai vế với 3, phương trình tương đương với \(27-27x+9x^2-x^3=2x^3\leftrightarrow\left(3-x\right)^3=2x^3\leftrightarrow3-x=\sqrt[3]{2}x\leftrightarrow x=\frac{3}{1+\sqrt[3]{2}}\leftrightarrow x=\sqrt[3]{4}-\sqrt[3]{2}+1.\)

mo chi mo ni
13 tháng 3 2018 lúc 22:23

Ai đó giải cụ thể hơn đc không

Trần Tuấn Hưng
22 tháng 9 2018 lúc 11:25

x4 = 2x2 +8x + 3

x4 - 2x2 = 8x +3

x4 + 2x2 + 1 = 4x2 +8x +4

(x2 +1)2 = 4(x + 1)2

(x2 - 2x - 1)(x2 + 2x + 3)=0

x=...

Yeltsa Kcir
Xem chi tiết
Hquynh
5 tháng 2 2023 lúc 19:52

\(b,x^2+3x-2=0\\ \Delta=3^2-4.1.\left(-2\right)=17\\ =>\left[{}\begin{matrix}x_1=\dfrac{-3+\sqrt{17}}{2}\\x_2=\dfrac{-3-\sqrt{17}}{2}\end{matrix}\right.\)

Mấy câu còn lại mình giải rồi 

Lysr
5 tháng 2 2023 lúc 19:57

 

 

Nguyễn Lê Phước Thịnh
5 tháng 2 2023 lúc 22:10

a: =>(x+1)(x+3)=0

=>x=-1 hoặc x=-3

b: Δ=3^2-4*1*(-2)=9+8=17>0

=>Phương trình có hai nghiệm pb là:

\(\left\{{}\begin{matrix}x_1=\dfrac{-3-\sqrt{17}}{2}\\x_2=\dfrac{-3+\sqrt{17}}{2}\end{matrix}\right.\)

c: =>3x^2-5x-8=0

=>3x^2-8x+3x-8=0

=>(3x-8)(x+1)=0

=>x=8/3 hoặc x=-1

d: =>(3x-1)^2=0

=>3x-1=0

=>x=1/3

....
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 8 2021 lúc 21:28

a: Ta có: \(x^2+3x+4=0\)

\(\text{Δ}=3^2-4\cdot1\cdot4=9-16=-7< 0\)

Do đó: Phương trình vô nghiệm

nguyễn thị thanh hoa
Xem chi tiết
Đinh Thùy Linh
7 tháng 6 2016 lúc 18:02

PT \(\Leftrightarrow x^3-6x-3=0\)

Phương trình nếu có nghiệm hữu tỷ thì nghiệm đó chỉ có thể là -3; -1; 1; 3. Thử vào thấy không thỏa mãn nên phương trình trên không có nghiệm hữu tỷ => Không giải được với kiến thức phổ thông.

Minh Lãng Vương
Xem chi tiết
Nguyễn Thị Thanh Trúc
Xem chi tiết