giá trị của \(3^{x^2-y^2}\)biết x+y=1,x-y=3
Tính giá trị của biểu thức sau, biết x+y=0
M=x^4-xy^3+x^3y-y^4-1=0
tính giá trị của biểu thức sau, biết x+y+1=0
D=X^2(x+y)-y^2 (x+y)+x^2-y^2+2(x+y)+3
cho biết x và y là 2 đại lượng tỷ lệ thuận , X^1 và X^2 là 2 giá trị khác nhau của X , Y^1 và Y^2 là 2 giá trị tương ứng của Y
a) Tính x^1 biết Y^1 = - 3 ; y^2 = -2 , X ^2 =5
b) tính x^2 và Y^2 biết x^2 + Y^2 =10 , x^1 = 2 , Y ^ 1 = 3
1/ Giá trị của x^3+ 9x^2y+ 27xy^2+27y^3 Biết (1/3)x+y+1=0
2/Giá trị của x+y=4, x.y=5 và x<0
3/Giá trị của 8x^3- 12x^2y-6xy^2-y^3
4/Giá trị x nguyên tố thỏa mản: x^2-x-20=0
5/Giá trị của x thỏa mãn (x-3)(x^4+2x^2+1)=0
6/Giá trị nhỏ nhất của: A=[x+2]-51/2
vì x+y=4 nền (x+y)^2=4^2 =x^2+ 2xy+y^2=16 ma xy=5 nên 2xy=10 ta có x^2+y^2+10=16 ; x^2+y^2= 16-10 x^2+y^2=6 kết quả mik là z đó nhưng k biết có đúng k bn ak
1/ Giá trị của x^3+ 9x^2y+ 27xy^2+27y^3 Biết (1/3)x+y+1=0
2/Giá trị của x+y=4, x.y=5 và x<0
3/Giá trị của 8x^3- 12x^2y-6xy^2-y^3
4/Giá trị x nguyên tố thỏa mản: x^2-x-20=0
5/Giá trị của x thỏa mãn (x-3)(x^4+2x^2+1)=0
6/Giá trị nhỏ nhất của: A=[x+2]-51/2
a, Giá trị nhỏ nhất của A= -x^2+x+1
b, Giá trị của biểu thức : x^3 + y^3 biết x+y=3 và x^2+y^2 = 13
Cho biết x và y là hai đại lượng tỉ lệ thuận, x 1 và x 2 là hai giá trị khác nhau của x,
y 1 và y 2 là hai giá trị tương ứng của y.Tính x 2 , y 2 biết 3x 2 -5y 2 = 10 và x 1 = 2, y 1 = 3.
\(x_1=2;y_1=3\\ \Rightarrow y_1=\dfrac{3}{2}x_1\\ \Rightarrow y_2=\dfrac{3}{2}x_2\)
Mà \(3x_2+5y_2=10\)
\(\Rightarrow3x_2+\dfrac{3}{2}\cdot5x_2=10\\ \Rightarrow x_2\left(3+\dfrac{15}{2}\right)=10\\ \Rightarrow x_2=10:\dfrac{21}{2}=\dfrac{20}{21}\\ \Rightarrow y_2=\dfrac{20}{21}\cdot\dfrac{3}{2}=\dfrac{10}{7}\)
Tính giá trị của các biểu thức sau biết x+y+1=0
N=x^2(x+y)-y^2(x+y)+x^2-y^2+2(x+y)+3
Ta có: x+y+1=0
nên x+y=-1
Ta có: \(N=x^2\left(x+y\right)-y^2\left(x+y\right)+x^2-y^2+2\left(x+y\right)+3\)
\(=\left(x+y\right)\left(x^2-y^2\right)+\left(x^2-y^2\right)+2\left(x+y\right)+3\)
\(=\left(x^2-y^2\right)\left(x+y+1\right)+2\left(x+y\right)+3\)
\(=\left(x^2-y^2\right)\cdot0+2\cdot\left(-1\right)+3\)
=-2+3=1
1) giá trị của x3+9x2y+27xy2+27y3 biet \(\frac{1}{3}\)x+y+1=0
2). giá trị của x+y biết x-y=4 ; xy=5 và x<0
3) giá trị của x3-12x2y+6xy2-y3 biet y=2x+5
Câu 1:giá trị của x3+y3 biết x+y=2 và x2+y2=20
Câu2: giá trị của biểu thức 2(x3-y3)-3(x+y)2 biết x-y=2
Câu 3:nghiệm nhỏ nhất của đa tức 11x - 2x2- 15
Câu 4:giá trị nhỏ nhất của -x4-x2-5.14
Câu 5:giá trị nhỏ nhất thỏa mãn: 4x2+7x+3=0
ai tl đúng mình tích cho
tính giá trị của biểu thức biết x+y=2
M= 3(x^2+y^2)-(x^3+y^3)+1
Ta có :
\(M=3\left(x^2+y^2\right)-\left(x^3+y^3\right)+1\)
\(=3\left(x^2+y^2+2xy-2xy\right)-\left(x+y\right)\left(x^2+y^2-xy\right)+1\)
\(=3\left(x^2+y^2+2xy\right)-6xy-\left(x+y\right)\left(x^2+y^2+2xy-3xy\right)+1\)
\(=3.\left(x+y\right)^2-6xy-\left[\left(x+y\right)\left(x^2+y^2+2xy\right)-\left(x+y\right)3xy\right]+1\)
\(=3\left(x+y\right)^2-6xy-\left(x+y\right)\left(x+y\right)^2+\left(x+y\right)3xy+1\)
\(=3\left(x+y\right)^2-6xy-\left(x+y\right)^3+\left(x+y\right)3xy+1\)
Thay \(x+y=2;\)có :
\(M=3.2^2-6xy-2^3+6xy+1\)
\(=12-8+1\)
\(=5\)
Vậy ...