cho tam giác ABC vuông tại A có góc C= α.
(giải giúp mình với ạ,chỉ mình luôn cách tính)
Cho tam giác ABC vuông cân tại A, góc A=36 độ, BC=1 cm, phân giác CD. Hãy tính cos góc A
(không cần vẽ hình cũng được ạ, chỉ cần làm chi tiết)
Mọi người giải giúp mình với, mình cảm ơn ạ
mình ghi lộn đề rồi mấy bạn khỏi giải nha
10, Cho t/giác ABC vuông tại A có ^ABC= 40. Tính tỉ số lượng giác của ABC.
14, Cho α = 2. Tính các lượng giác còn lại của góc α biết góc α là góc nhọn.
chỉ rõ hộ mk từng cách giải đc ko ạ?
cho tam giác ABC vuông tại A có AB = 10cm, AC=15cm
a, vẽ AH vuông góc với BC tại H. Tính AH, HB, HC
b, phân giác trong góc B cắt AC tại I. Tính BI, IC, AI
giúp mình với ạ, mình cần gấp
a/
\(BC=\sqrt{AB^2+AC^2}\) (Pitago)
\(\Rightarrow BC=\sqrt{10^2+15^2}=\sqrt{325}=5\sqrt{13}\)
\(AB^2=HB.BC\) (Trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)
\(\Rightarrow HB=\dfrac{AB^2}{BC}=\dfrac{10^2}{5\sqrt{13}}=\dfrac{20\sqrt{13}}{13}\)
\(HC=BC-HB=5\sqrt{13}-\dfrac{20\sqrt{13}}{13}\)
\(AH^2=HB.HC\) (trong tg vuông bình phương đường cao hạ từ đỉnh góc vuông xuống cạnh huyền bằng tích giữa 2 hình chiếu của 2 cạnh góc vuông trên cạnh huyền)
Bạn tự thay số tính nốt nhé vì số hơi lẻ
b/
Áp dụng tính chất đường phân giác trong tg: đường phân giác của một góc chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề của hai đoạn thẳng ấy
\(\Rightarrow\dfrac{IA}{IC}=\dfrac{AB}{BC}=\dfrac{10}{5\sqrt{13}}=\dfrac{2\sqrt{13}}{13}\)
Mà \(IA+IC=AC=15\) Từ đó tính được IA và IC
Xét tg vuông ABI có
\(BI=\sqrt{AB^2+IA^2}\) (pitago)
Bạn tự thay số tính nhé
Giải giúp mình với, mình cần gấp ạ! Không cần vẽ hình cũng đc ạ, Mình cảm ơn rất nhiều!!
Cho tam giác ABC vuông tại A, có AB = 6cm; AC = 8cm. Kẻ phân giác AD của góc A (D BC). Tính AD (làm tròn kết quả đến chữ số thập phân thứ hai).
(Gợi ý: Kẻ đường cao AH của tam giác ABC).
1)Cho tam giác ABC vuông tại A.Biết góc B=60 độ;BC=4.Tính AB,AC,chiều cao AH
2)Cho tam giác ABC vuông tại A.Biết AB=2;góc C=45 độ.Tính AC,BC,chiều cao AH
3)Cho tam giác ABC vuông tại A,Biết AB=3;AC=4.Tính sin C,tan B
Giải giúp mình ạ
giúp mình với
Cho tam giác ABC vuông tại A; góc B= α; có $\frac{AC}{AB}$ = $\sqrt{3}$. Chứng minh α= 60 độ
ta có: B=\(\alpha\) mà \(\frac{AC}{AB}=\sqrt{3}\)→\(\tan\alpha=\sqrt{3}\)
lại có: 1+ tan2\(\alpha\)=\(\frac{1}{\cos^2\alpha}\)→cos2\(\alpha\)=\(\frac{1}{4}\)→cos \(\alpha\)=\(\frac{1}{2}\)hay \(\frac{AB}{BC}=\frac{1}{2}\)
→ C=30o(Δ vuông có 1 cạnh góc vuông = 1/2 cạnh huyền)
do đó B=600
Cho tam giác ABC vuông tại A, có AB =6 BC = 10
a tính chu vi và diện tích tam giác vuông ABC
b vẽ tia phân giác của góc B , tia phân giác này cắt AC tại D . Tính tủ số DA/DC
c từ A vẽ một toa vuông góc với BD , tia này cắt BC tại I. Cm góc BID vuông
Giúp mình với ạ
a) Xét tam giác ABC vuông tại A có:
* \(BC^2=AB^2+AC^2\)(định lý Py-ta-go)
\(< =>10^2=6^2+AC^2\)
\(< =>AC^2=100-36\)
\(< =>AC=\sqrt{64}\)
\(< =>AC=8\)
Chu vi tam giác ABC là : \(AB+AC+BC=6+10+8=24\left(cm\right)\)
Diện tích tam giác ABC là: \(\frac{AB.AC}{2}=\frac{6.8}{2}=24\left(cm^2\right)\)
b) Ta có: BD là phân giác của góc B (gt)
=> \(\frac{DA}{DC}=\frac{BA}{BC}\)(tính chất đường phân giác trong 1 tam giác)
Mà \(\frac{BA}{BC}=\frac{6}{10}=\frac{3}{5}\)
=>\(\frac{DA}{DC}=\frac{3}{5}\)
c) Xét tam giác ABI có:
* BD là phân giác góc B (gt)
* BD là đường cao (AI vuông góc BD)
=> Tam gi1c ABI cân tại B
=> BA = BI (tính chất)
Xét tam giác ABD và tam giác IBD có:
*AB = IB (cmt)
*Góc ABD = Góc IBD (BD là phân giác)
*BD là cạnh chung
=> tam giác ABD = tam giác IBD (c-g-c)
=> Góc BAD = Góc BID (tính chất)
Mà góc BAD = 90 độ (tam giác ABC vuông tại A)
=> Góc BID = 90 độ
Cho tam giác ABC có góc A = 60 độ. Phân giác BD của góc B và phân giác CE của góc C cắt nhau tại điểm I.
a) Tính góc BIC .
b) Hạ IH vuông góc với AB tại H, IK vuông góc với BC tại K, so sánh IH và IK.
c) Chứng minh AI là phân giác của góc BAC .
Giải giúp mình với ạ 🥺
Bài 1 : Cho tam giác ABC vuông tại A , đường cao AH , có HB =9 cm , HC =16cm . Tính góc B và góc C
GIẢI GIÚP MÌNH BÀI NÀY VỚI Ạ , MÌNH ĐANG CẦN GẤP
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB^2=9\cdot25=225\\AC^2=16\cdot25=400\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=15\left(cm\right)\\AC=20\left(cm\right)\end{matrix}\right.\)
Xét ΔABC vuông tại A có
\(\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{15}{25}=\dfrac{3}{5}\)
\(\Leftrightarrow\widehat{C}\simeq37^0\)
\(\Leftrightarrow\widehat{B}=53^0\)
Cho tam giác ABC vuông tại A có góc C bằng 30°,tia phân giác của góc B cắt AC tại D,kẻ DE vuông góc BC tại E. a) Chứng minh ∆ABD=∆EBD b)Chứng minh tam giác ABE là tam giác đều. c)Chứng minh BD=DC GIÚP MÌNH VỚI Ạ
a) Xét ∆ABD và ∆EBD ta có :
BD chung
góc BAD = góc BED ( = 90 độ)
góc ABD = góc EBD ( gt)
=> ∆ABD=∆EBD ( ch-gn)
b) Xét tam giác vuông ABC ta có :
Góc A = 90 độ, góc C = 30 độ
Mà góc A + góc C + góc B = 180 độ
=> góc B = 180 - 90 - 30 = 60 độ (1)
Xét tam giác ABE ta có :
BA = BE ( vì ∆ABD=∆EBD) => tam giác ABE cân tại B
Mà góc B = 60 độ => Tam giác ABE là tam giác đều ( trong tam giác cân, một góc = 60 độ thì tam giác đó là tam giác đều )
a) Xét `∆ABD` và `∆EBD` ta có :
`BD` chung
`hat (BAD) = hat (BED) ( = 90^o)`
`hat(ABD) = hat (EBD)`
`=> ∆ABD=∆EBD ( ch-gn)`
b) Xét tam giác vuông `ABC` ta có :
`Hat A = 90 độ, hatC = 30 độ`
Mà `hat (A) + hat (C) + hat (B) = 180^o`
`=> hat(B) = 180 - 90 - 30 = 60 độ (1)`
Xét tam giác ABE ta có :
`BA = BE ( vì ∆ABD=∆EBD) =>` ` triangle ABE `cân tại B
Mà `hat(B)= 60 độ => triangle ABC` là tam giác đều
a) Xét ∆ABD và ∆EBD ta có :
BD chung
góc BAD = góc BED ( = 90 độ)
góc ABD = góc EBD ( gt)
=> ∆ABD=∆EBD ( ch-gn)
b) Xét tam giác vuông ABC ta có :
Góc A = 90 độ, góc C = 30 độ
Mà góc A + góc C + góc B = 180 độ
=> góc B = 180 - 90 - 30 = 60 độ (1)
Xét tam giác ABE ta có :
BA = BE ( vì ∆ABD=∆EBD) => tam giác ABE cân tại B
Mà góc B = 60 độ => Tam giác ABE là tam giác đều ( trong tam giác cân, một góc = 60 độ thì tam giác đó là tam giác đều )