Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngô Thị Thu Trang
Xem chi tiết
Ngo Thi Thu Trang
14 tháng 11 2015 lúc 12:41

sao co ten giong minh qua

Cù Thị Mỹ Kim
17 tháng 2 2016 lúc 23:26

thay 2016=xy+yz+xz vào các mẫu 
dùng Cô-Si đảo vào từng phân số 
sẽ dễ dàng chứng minh đc :D

Phúc
13 tháng 12 2017 lúc 20:54

Ta có

\(\sqrt{\frac{yz}{x^2+2016}}=\sqrt{\frac{yz}{x^2+yz+xy+xz}}\)

                              =\(\sqrt{\frac{yz}{\left(x+z\right)\left(x+y\right)}}\)\(\le\frac{1}{2}.\frac{y}{x+y}+\frac{1}{2}.\frac{z}{x+z}\)

Tương tự \(\sqrt{\frac{xy}{y^2+2016}}\le\)\(\frac{1}{2}\left(\frac{x}{y+x}+\frac{y}{y+z}\right)\)

              \(\sqrt{\frac{xz}{z^2+2016}}\le\)\(\frac{1}{2}\left(\frac{x}{z+x}+\frac{z}{z+y}\right)\)

=> \(VT\)\(\le\)\(\frac{1}{2}\)(\(\frac{x}{x+y}+\frac{y}{x+y}+\frac{x}{x+z}+\frac{z}{x+z}\)+\(\frac{y}{y+z}+\frac{z}{y+z}\))

                       =\(\frac{3}{2}\)(\(ĐPCM\))

Admin (a@olm.vn)
Xem chi tiết
phan thị minh anh
Xem chi tiết
Kuro Kazuya
4 tháng 4 2017 lúc 11:44

\(VT=\sqrt{\dfrac{yz}{x^2+xy+yz+xz}}+\sqrt{\dfrac{xy}{y^2+xy+yz+xz}}+\sqrt{\dfrac{xz}{z^2+xy+yz+xz}}\)

\(VT=\sqrt{\dfrac{yz}{\left(x+y\right)\left(x+z\right)}}+\sqrt{\dfrac{xy}{\left(y+z\right)\left(x+y\right)}}+\sqrt{\dfrac{xz}{\left(x+z\right)\left(y+z\right)}}\)

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow\left\{{}\begin{matrix}\sqrt{\dfrac{yz}{\left(x+y\right)\left(x+z\right)}}\le\dfrac{\dfrac{y}{x+y}+\dfrac{z}{x+z}}{2}\\\sqrt{\dfrac{xy}{\left(y+z\right)\left(x+y\right)}}\le\dfrac{\dfrac{x}{x+y}+\dfrac{y}{y+z}}{2}\\\sqrt{\dfrac{xz}{\left(x+z\right)\left(y+z\right)}}\le\dfrac{\dfrac{x}{x+z}+\dfrac{z}{y+z}}{2}\end{matrix}\right.\)

\(\Rightarrow VT\le\dfrac{\left(\dfrac{x}{x+y}+\dfrac{y}{x+y}\right)+\left(\dfrac{y}{y+z}+\dfrac{z}{y+z}\right)+\left(\dfrac{z}{x+z}+\dfrac{x}{x+z}\right)}{2}\)

\(\Rightarrow VT\le\dfrac{\dfrac{x+y}{x+y}+\dfrac{y+z}{y+z}+\dfrac{x+z}{x+z}}{2}=\dfrac{3}{2}\)

\(\Leftrightarrow\sqrt{\dfrac{yz}{x^2+2016}}+\sqrt{\dfrac{xy}{y^2+2016}}+\sqrt{\dfrac{xz}{z^2+2016}}\le\dfrac{3}{2}\) ( đpcm )

Dấu " = " xảy ra khi \(x=y=z=4\sqrt{42}\)

Lightning Farron
4 tháng 4 2017 lúc 17:16

Sửa đề:\(\sqrt{\dfrac{yz}{x^2+2016}}+\sqrt{\dfrac{xy}{z^2+2016}}+\sqrt{\dfrac{xz}{y^2+2016}}\le\dfrac{3}{2}\)

Giải

Ta có:

\(\sqrt{\dfrac{xy}{z^2+2016}}=\sqrt{\dfrac{xy}{z^2+xy+xz+yz}}=\sqrt{\dfrac{xy}{\left(x+z\right)\left(y+z\right)}}\)

Áp dụng BĐT AM-GM ta có:

\(\sqrt{\dfrac{xy}{z^2+2016}}=\sqrt{\dfrac{xy}{\left(x+z\right)\left(y+z\right)}}\le\dfrac{1}{2}\left(\dfrac{x}{x+z}+\dfrac{y}{y+z}\right)\)

Tương tự cho 2 BĐT còn lại ta có:

\(\sqrt{\dfrac{yz}{x^2+2016}}\le\dfrac{1}{2}\left(\dfrac{y}{x+y}+\dfrac{z}{x+z}\right);\sqrt{\dfrac{xz}{y^2+2016}}\le\dfrac{1}{2}\left(\dfrac{x}{x+y}+\dfrac{z}{y+z}\right)\)

Cộng theo vế 3 BĐT trên ta có:

\(\Sigma\sqrt{\dfrac{xy}{z^2+2016}}\le\dfrac{1}{2}\Sigma\left(\dfrac{x}{x+z}+\dfrac{y}{y+z}\right)=\dfrac{1}{2}\Sigma\left(\dfrac{x}{x+z}+\dfrac{z}{x+z}\right)=\dfrac{3}{2}\)

Đẳng thức xảy ra khi \(x=y=z=4\sqrt{42}\)

Lightning Farron
3 tháng 4 2017 lúc 22:12

xí bài này nhé, lát nữa hoặc mai giải

Phạm Hà Chi
Xem chi tiết
alibaba nguyễn
21 tháng 9 2018 lúc 8:51

\(3=x^2+y^2+z^2\ge3\sqrt[3]{x^2y^2z^2}\)

\(\Rightarrow xyz\le1\)

\(\sqrt[3]{x^2}+\sqrt[3]{y^2}+\sqrt[3]{z^2}\le\frac{x^2+1+1}{3}+\frac{y^2+1+1}{3}+\frac{z^2+1+1}{3}=3\)

Ta co:

\(A=\frac{x}{\sqrt[3]{yz}}+\frac{y}{\sqrt[3]{xz}}+\frac{z}{\sqrt[3]{xy}}=\frac{x\sqrt[3]{x}}{\sqrt[3]{xyz}}+\frac{y\sqrt[3]{y}}{\sqrt[3]{xyz}}+\frac{z\sqrt[3]{z}}{\sqrt[3]{xyz}}\)

\(\ge x\sqrt[3]{x}+y\sqrt[3]{y}+z\sqrt[3]{z}\)

\(\Rightarrow3A\ge3\left(x\sqrt[3]{x}+y\sqrt[3]{y}+z\sqrt[3]{z}\right)\ge\left(x\sqrt[3]{x}+y\sqrt[3]{y}+z\sqrt[3]{z}\right)\left(\sqrt[3]{x^2}+\sqrt[3]{y^2}+\sqrt[3]{z^2}\right)\)

\(\ge\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)

\(\Rightarrow A\ge xy+yz+zx\)

Kiệt Nguyễn
25 tháng 5 2020 lúc 19:22

Áp dụng BĐT Cauchy - Schwarz, ta có: \(3\left(x^2+y^2+z^2\right)=\left(1^2+1^2+1^2\right)\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)

\(\Rightarrow x+y+z\le\sqrt{3\left(x^2+y^2+z^2\right)}=3=x^2+y^2+z^2\)(Do \(x^2+y^2+z^2=3\))

Ta có: \(\frac{x}{\sqrt[3]{yz}}+\frac{y}{\sqrt[3]{zx}}+\frac{z}{\sqrt[3]{xy}}=\frac{x}{\sqrt[3]{yz.1}}+\frac{y}{\sqrt[3]{zx.1}}+\frac{z}{\sqrt[3]{xy.1}}\)

\(\ge\frac{x}{\frac{y+z+1}{3}}+\frac{y}{\frac{z+x+1}{3}}+\frac{z}{\frac{x+y+1}{3}}\)\(=\frac{3x}{y+z+1}+\frac{3y}{z+x+1}+\frac{3z}{x+y+1}\)

\(=\frac{3x^2}{xy+zx+x}+\frac{3y^2}{yz+xy+y}+\frac{3z^2}{zx+yz+z}\)\(\ge\frac{3\left(x+y+z\right)^2}{2\left(xy+yz+zx\right)+\left(x+y+z\right)}\)(Theo BĐT Cauchy - Schwarz dạng Engle)

\(\ge\frac{3\left(x+y+z\right)^2}{2\left(xy+yz+zx\right)+x^2+y^2+z^2}=\frac{3\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=3=x^2+y^2+z^2\)

\(\ge xy+yz+zx\)

Đẳng thức xảy ra khi x = y = z = 1

Khách vãng lai đã xóa
Tran Le Khanh Linh
25 tháng 5 2020 lúc 20:42

\(\sqrt[3]{yz\cdot1}\le\frac{y+z+1}{3};\sqrt[3]{xz\cdot1}\le\frac{x+z+1}{3};\sqrt[3]{yx\cdot1}\le\frac{y+x+1}{3}\)

Nên \(A=\frac{x}{\sqrt[3]{yz}}+\frac{y}{\sqrt[3]{xz}}+\frac{z}{\sqrt[3]{xy}}\ge3\left(\frac{x}{y+z+1}+\frac{y}{x+z+1}+\frac{z}{y+x+1}\right)\)\(=3\left(\frac{x^2}{xy+yz+x}+\frac{y^2}{xy+yz+y}+\frac{z^2}{yz+xz+z}\right)=B\)

\(B\ge\frac{3\left(x+y+z\right)^2}{2\left(xy+yz+zx\right)+x+y+z}\ge\frac{3\left(x+y+z\right)^2}{2\left(xy+yz+zx\right)+x^2+y^2+z^2}=\frac{3\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=3\ge xy+yz+zx\)

do \(\left(x+y+z\right)^2\le3\left(x^2+y^2+z^2\right)=9\Rightarrow x+y+z\le3=x^2+y^2+z^2;xy+yz+zx\le x^2+y^2+z^2=3\)

Khách vãng lai đã xóa
Đặng Phương Nga
Xem chi tiết
Kudo Shinichi
10 tháng 10 2019 lúc 20:51

Theo giả thiết \(\sqrt{\frac{yz}{x}}+\sqrt{\frac{xz}{y}}+\sqrt{\frac{xy}{z}}=3\)

\(\Rightarrow\frac{yz}{x}+\frac{xz}{y}+\frac{xy}{z}+2x+2y+2z=9\)

Mặt khác , ta có BĐT phụ : \(\frac{yz}{x}+\frac{xz}{y}+\frac{xy}{z}\ge x+y+z\)

\(\Rightarrow9\ge3\left(x+y+z\right)\)

\(\Leftrightarrow x+y+z\le3\)

Áp dụng BĐT Cauchy Shwarz \(\Rightarrow\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2\le3\left(x+y+z\right)\le9\)

\(\Rightarrow\sqrt{x}+\sqrt{y}+\sqrt{z}\le3\)

Ta có : \(P=\sqrt{x}+\sqrt{y}+\sqrt{z}+\frac{2016}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

\(=\sqrt{x}+\sqrt{y}+\sqrt{z}+\frac{9}{\sqrt{x}+\sqrt{y}+\sqrt{z}}+\frac{2007}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

\(\ge2.\sqrt{9}+\frac{2007}{3}=675\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=1\)

Chúc bạn học tốt !!!

Nguyễn Thanh Vân
Xem chi tiết
Đặng Kim Anh
Xem chi tiết
Thanh Tùng DZ
5 tháng 2 2020 lúc 17:12

Áp dụng BĐT Cô-si dạng Engel,ta có :

\(\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{xz}}+\frac{z^2}{z+\sqrt{xy}}\ge\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{xz}}\)

Mà \(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\le x+y+z\)

\(\Rightarrow\)\(\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{xz}}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}\ge\frac{3}{2}\)

Dấu "=" xảy ra khi x = y = z = \(\frac{3}{2}\)

Khách vãng lai đã xóa
Thanh Tùng DZ
5 tháng 2 2020 lúc 17:13

nhầm sửa x = y = z = 1 nha

Khách vãng lai đã xóa
Kudo Shinichi
6 tháng 2 2020 lúc 18:12

Áp dụng bất đẳng thức cộng mẫu số 

\(\Rightarrow\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{xz}}+\frac{z^2}{z+\sqrt{xy}}\ge\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{yz}+\sqrt{xz}+\sqrt{xy}}\)

Xét \(\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{yz}+\sqrt{xz}+\sqrt{xy}}\)

Áp dụng bất đẳng thức Cacuchy cho 2 bộ số thực không âm

\(\Rightarrow\hept{\begin{cases}\sqrt{yz}\le\frac{y+z}{2}\\\sqrt{xz}\le\frac{x+z}{2}\\\sqrt{xy}\le\frac{x+y}{2}\end{cases}}\)

\(\Rightarrow\sqrt{yz}+\sqrt{xz}+\sqrt{xy}\le\frac{y+z}{2}+\frac{x+z}{2}+\frac{x+y}{2}\)

\(\Rightarrow\sqrt{yz}+\sqrt{xz}+\sqrt{xy}\le\frac{2\left(x+y+z\right)}{2}\)

\(\Rightarrow\sqrt{yz}+\sqrt{xz}+\sqrt{xy}\le x+y+z\)

\(\Rightarrow x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\le2\left(x+y+z\right)\)

\(\Rightarrow\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{xz}+\sqrt{yz}}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}\)

Ta có : \(x+y+z\ge3\)

\(\Rightarrow\frac{x+y+z}{2}\ge\frac{3}{2}\)

\(\Rightarrow\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{xz}+\sqrt{yz}}\ge\frac{3}{2}\)

Vì \(\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{xz}}+\frac{z^2}{z+\sqrt{xy}}\ge\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{yz}+\sqrt{xz}+\sqrt{xy}}\)

\(\Rightarrow\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{xz}}+\frac{z^2}{z+\sqrt{xy}}\ge\frac{3}{2}\left(đpcm\right)\)

Chúc bạn học tốt !!!

Khách vãng lai đã xóa
Xem chi tiết
Akai Haruma
26 tháng 12 2017 lúc 10:02

Lời giải:

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\text{VT}=\frac{x}{\sqrt[3]{yz}}+\frac{y}{\sqrt[3]{xz}}+\frac{z}{\sqrt[3]{xy}}=\frac{x^2}{\sqrt[3]{x^3yz}}+\frac{y^2}{\sqrt[3]{y^3xz}}+\frac{z^2}{\sqrt[3]{z^3xy}}\)

\(\geq \frac{(x+y+z)^2}{\sqrt[3]{x^3yz}+\sqrt[3]{y^3xz}+\sqrt[3]{z^3xy}}\) (1)

Áp dụng BĐT Am-Gm:

\(\sqrt[3]{x^3yz}\leq \frac{x^2+xyz+1}{3}; \sqrt[3]{y^3xz}\leq \frac{y^2+xyz+1}{3}; \sqrt[3]{z^3xy}\leq \frac{z^2+xyz+1}{3}\)

\(\Rightarrow \sqrt[3]{x^3yz}+\sqrt[3]{y^3xz}+\sqrt[3]{z^3xy}\leq \frac{x^2+y^2+z^2+3xyz+3}{3}=2+xyz\)

Theo BĐT AM-GM:

\(x^2+y^2+z^2\geq 3\sqrt[3]{x^2y^2z^2}\Leftrightarrow 3\sqrt[3]{x^2y^2z^2}\leq 3\Leftrightarrow xyz\leq 1\)

Do đó: \(\sqrt[3]{x^3yz}+\sqrt[3]{y^3xz}+\sqrt[3]{z^3xy}\leq 3\) (2)

Từ (1),(2) và sử dụng hệ quả \(x^2+y^2+z^2\geq xy+yz+xz\) :

\(\Rightarrow \text{VT}\geq \frac{(x+y+z)^2}{3}=\frac{x^2+y^2+z^2+2(xy+yz+xz)}{3}\geq \frac{3(xy+yz+xz)}{3}=xy+yz+xz\)

Ta có đpcm

Dấu bằng xảy ra khi \(x=y=z=1\)

Lightning Farron
27 tháng 12 2017 lúc 17:50

Áp dụng BĐT AM-GM ta có:

\(VT\ge\dfrac{x}{\dfrac{y+z+1}{3}}+\dfrac{y}{\dfrac{x+z+1}{3}}+\dfrac{z}{\dfrac{x+y+1}{3}}\)

Cần chứng minh \(\dfrac{9x}{y+z+1}+\dfrac{9y}{x+z+1}+\dfrac{9z}{x+y+1}\ge3\left(xy+yz+xz\right)\)

Cauchy-Schwarz: \(VT=\dfrac{9x^2}{xy+xz+x}+\dfrac{9y^2}{xy+yz+y}+\dfrac{9z^2}{xz+yz+z}\)

\(\ge\dfrac{9\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)+x+y+z}\ge\left(x+y+z\right)^2\)

BĐT cuối đúng vì dễ thấy: \(\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)\)

Lâm ngọc mai
Xem chi tiết
Kudo Shinichi
1 tháng 1 2020 lúc 10:22

Áp dụng BĐT Cauchy - Schwarz ta có :

\(VT=\frac{x}{\sqrt[3]{yz}}+\frac{y}{\sqrt[3]{xz}}+\frac{z}{\sqrt[3]{xy}}=\frac{x^2}{\sqrt[3]{x^3yz}}+\frac{y^2}{\sqrt[3]{y^3xz}}+\frac{z^2}{\sqrt[3]{z^3xy}}\)

\(\ge\frac{\left(x+y+z\right)^2}{\sqrt[3]{x^3yz}+\sqrt[3]{y^3xz}+\sqrt[3]{z^3xy}}\left(1\right)\)

Áp dụng BĐT : AM - GM :

\(\sqrt[3]{x^3yz}\le\frac{x^2+xyz+1}{3};\sqrt[3]{y^3xz}\le\frac{y^2+xyz+1}{3};\sqrt[3]{z^3xy}\le\frac{z^2+xyz+1}{3}\)

\(\Rightarrow\sqrt[3]{x^3yz}+\sqrt[3]{y^3xz}+\sqrt[3]{z^3xy}\le\frac{x^2+y^2+z^2+3xyz+3}{3}=2+xyz\)

Theo BĐT AM - GM :

\(x^2+y^2+z^2\ge3\sqrt[3]{x^2y^2z^2}\Leftrightarrow3\sqrt[3]{x^2y^2z^2}\le3\Leftrightarrow xyz\le1\)

Do đó : \(\sqrt[3]{x^3yz}+\sqrt[3]{y^3xz}+\sqrt[3]{z^3xy}\le3\left(2\right)\)

Tư (1) , (2) và sử dụng hệ quả :
\(x^2+y^2+z^2\ge xy+yz+zx:\)

\(\Rightarrow VT\ge\frac{\left(x+y+z\right)^2}{3}=\frac{x^2+y^2+z^2+2\left(xy+yz+xz\right)}{3}\ge\frac{3\left(xy+yz+xz\right)}{3}\)\(=xy+yz+xz\)

Ta có đpcm 

Dấu " = " xảy ra khi \(x=y=z=1\)

Chúc bạn học tốt !!!

Khách vãng lai đã xóa