B1:x^2+2016=xy+yz+xz+x^2=...
tuong tu
y^2+2016=... ; z^2+2016=....
B2:bdt am-gm
B1:x^2+2016=xy+yz+xz+x^2=...
tuong tu
y^2+2016=... ; z^2+2016=....
B2:bdt am-gm
Cho ba số thực dương x,y,z thỏa mãn xy+xz+yz=2016
\(\sqrt{\frac{yz}{x^2+2016}}+\sqrt{\frac{xy}{y^2+2016}}+\sqrt{\frac{xz}{z^2+2016}}\le\frac{3}{2}\)
Cho các số thực dương x, y, z thỏa mãn \(x^2+y^2+z^2=3\)
\(CMR:\frac{x}{\sqrt[3]{yz}}+\frac{y}{\sqrt[3]{xz}}+\frac{z}{\sqrt[3]{xy}}\ge xy+yz+xz\)
Cho 3 số dương x, y, z thay đổi thoả mãn: \(\sqrt{\frac{xy}{z}}+\sqrt{\frac{xz}{y}}+\sqrt{\frac{yz}{x}}=3\)
Tìm giá trị nhỏ nhất của biểu thức:
\(P=\sqrt{x}+\sqrt{y}+\sqrt{z}+\frac{2016}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)
Cho 3 số dương x, y, z thay đổi thoả mãn:
\(\sqrt{\frac{xy}{z}}+\sqrt{\frac{xz}{y}}+\sqrt{\frac{yz}{x}}=3\) . Tìm giá trị nhỏ nhất của biểu \(P=\sqrt{x}+\sqrt{y}+\sqrt{z}+\frac{2016}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)
Cho 3 số thực dương x , y , z thỏa mãn \(x+y+z\ge3\)
Chứng minh rằng: \(\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{xz}}+\frac{z^2}{z+\sqrt{xy}}\ge\frac{3}{2}\)
Cho các số thực dương\(x^2+y^2+z^2=3\)
Chứng minh rằng : \(\frac{x}{\sqrt[3]{yz}}+\frac{y}{\sqrt[3]{xz}}+\frac{z}{\sqrt[3]{xy}}\ge xy+yz+xz\)
Cho x, y, z là các số thực dương thoả mãn xy + yz + xz = 1. Chứng minh
\(\frac{1}{1+x^2}+\frac{1}{1+y^2}+\frac{1}{1+z^2}\ge\frac{2}{3}\left(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}\right)^3\)
Cho x, y, z là 3 số dương thỏa mãn: x+y+z=3. Chứng minh rằng:
\(\frac{x}{x+\sqrt{3x+yz}}+\frac{y}{y+\sqrt{3y+xz}}+\frac{z}{z+\sqrt{3z+xy}}\le1\)
Cho các số thực dương x,y,z thỏa mãn xy+yz+xz=2020
Tìm GTLN của \(A=\sqrt{\frac{yz}{x^2+2020}}+\sqrt{\frac{xy}{y^2+2020}}+\sqrt{\frac{xz}{z^2+2020}}.\)
Nhìn đề bài thấy sai sai :)) Bn nào lm giúp mà phải sửa đề thì cứ sửa nhé. Tks