Cho tam giac ABC vg tại A vẽ AH vg góc vs BC.CM :2AH^2+BH^2+CH^2=BC^2
cho tam giác ABC vg tại A kẻ AH vg GÓC vs BC C/M AB bình + CH bình=AC bình +BH bình
Cho tam giác ABC vg tại A có góc B=60°.M lá trg điểm của BC , AH vg góc vs BC tại H, qua H vẽ đg vg goc vs AC cắt AM tại N.CM:
a.các tam giác MAB , MNH là những tam giác đều
b.▲BMN=▲AMH suy ra BN vg góc vs AM
Cho tam giác ABC vg tại A
AH vg góc với BC tại H
HE vg góc với AB tại E
HF vg góc với AC tại F
M trung điểm BC
P trung điểm BH
Q trung điểm MC
HN vg góc với EF tại N
CM :
1) BC^2=BE^2+CF^2+3AH^2
2) AH^3=BC.BE.CF=BC.HE.HF
3) BE^2=BH^3/BC
4) CF^2=CH^3/BC
1: \(BE^2+CF^2+3AH^2\)
\(=BH^2-HE^2+CH^2-HF^2+3AH^2\)
\(=BH^2+CH^2+2AH^2\)
\(=BH^2+CH^2+2\cdot BH\cdot CH\)
\(=\left(BH+CH\right)^2=BC^2\)
2: \(BC\cdot BE\cdot CF=BC\cdot\dfrac{BH^2}{AB}\cdot\dfrac{CH^2}{AC}=\dfrac{BC}{AB\cdot AC}\cdot AH^4\)
\(=AH^4\cdot\dfrac{BC}{AH\cdot BC}=AH^3\left(1\right)\)
\(BC\cdot HE\cdot HF=BC\cdot\dfrac{HA\cdot HB}{AB}\cdot\dfrac{HA\cdot HC}{AC}\)
\(=\dfrac{BC}{AB\cdot AC}\cdot HA^2\cdot HB\cdot HC\)
\(=\dfrac{BC}{AH\cdot BC}\cdot HA^2\cdot HA^2=\dfrac{HA^4}{AH}=AH^3\)(2)
Từ (1) và (2) suy ra \(AH^3=BC\cdot BE\cdot CF=BC\cdot HE\cdot HF\)
Cho tam giác vg ác vg tạo a (ab<ac) ,đường cao ah. Trên bc lấy m sao cho ba=bm. Từ m kẻ mn vg góc với ac (n thuộc ac). Cmr
a. Tam giác ANH cân
b. BC +AH >AB+AC
c. 2ac^2 - bc^2= ch^2- bh^2
ho tam giác vg ác vg tạo a (ab<ac) ,đường cao ah. Trên bc lấy m sao cho ba=bm. Từ m kẻ mn vg góc với ac (n thuộc ac). Cmr
a. Tam giác ANH cân
b. BC +AH >AB+AC
c. 2ac^2 - bc^2= ch^2- bh^2
o l m . v n
tg ABC,góc A=90 dộ,AB<AC.Vẹ ra phía ngoài tg ABC 2 tg cân tại A là tg ABD và tg ACE.a)CM:BC=DE.b)CM: BD//CE.c)Kẻ AH vg góc vs BC tại H.AH cắt DE tại M.Đường thẳng qua A vg góc vs MC cắt BC tại N.CM:CA vg góc vs MN.d)CM:AM=DE/2
Cho tam giác ABC có góc A tù. Từ A hạ AH vg góc vs BC (H thuộc BC). Biết AB = 29cm, AC = 40cm và AH = 1/2 BC. Tính BH và HC
Đầu bài ko sai đâu nên đg bảo sai-_-
Cho Tam giác ABC chuông tại A . vẽ AH vuông góc với BC tại H . Chứng minh rằng : 2AH^2 +BH^2 + CH^2 =BC^2
Mình cần gấp mong mọi người giúp !
cho tam giác abc vuông tại a kẻ ah vuông góc với bc tại h
cmr bh^2+ch^2+2ah^2=bc^2
Cho tam giác ABC vuông tại A. Vẽ AH vuông góc với BC tại H. Chứng minh rằng:
a) AB^2 + CH^2 = AC^2 + BH^2
b) BC^2 = 2AH^2 + BH^2 + CH^2
GIÚP MÌNH NHANH VỚI MÌNH CẦN GẤP!!
Hình bạn tự vẽ nhé
a) Áp dụng định lý Pytago vào \(\Delta AHB\)vuông tại H ta được:
\(AB^2=BH^2+AH^2\Rightarrow AH^2=AB^2-BH^2\)(1)
Áp dụng định lý Pytago vào \(\Delta HAC\)vuông tại H ta được:
\(AC^2=AH^2+CH^2\Rightarrow AH^2=AC^2-CH^2\)(2)
Từ (1) và (2) \(\Rightarrow AC^2-CH^2=AB^2-BH^2\)
\(\Leftrightarrow AB^2+CH^2=AC^2+BH^2\)(ĐCCM)
b) Áp dụng định lý Pytago vào\(\Delta ABC\) vuông tại A ta được:
\(BC^2=AC^2+AB^2\)\(=\left(AH^2+CH^2\right)+\left(AH^2+BH^2\right)=2AH^2+CH^2+BH^2\)(ĐCCM)