cho n là số tự nhiên lẻ.Ta có :
\(^{^{6^n:\left(-2\right)^n=k^n}}\)
Tìm k.
Cho n là một số tự nhiên lẻ.Ta có:6n:(-2)n=kn.Vậy k=...
6n : (-2)n = kn
(6 : -2)n = kn
-3n = kn
Vậy k = -3
cho n là 1 số tự nhiên lẻ.ta có 6^n:(-2)^n=k^n.VẬY K=?
AI LÀM XONG NHANH NHẤT VÀ ĐÚNG MÌNH TICK CHO NHA NÊU CÁCH GIẢI ĐI
Cho n là một số tự nhiên lẻ. Ta có: \(6^n\div\left(-2\right)^n=k^n\). Vậy k=
\(\left(-\dfrac{1}{2}x^5y^7z^{n-3}+3x^{n-2}y^8\right):\left(-3x^4y^{n-2}\right)\)
Tìm số tự nhiên n để phép chia trên là phép chia hết
________________
Mình ra \(n\in\left\{6,7,8,9\right\}\) đúng k ạ?
\(A=\dfrac{1}{6}xy^{7-n+2}z^{n-3}-x^{n-2-4}y^{8-n+2}\)
\(=\dfrac{1}{6}xy^{9-n}z^{n-3}-x^{n-6}y^{10-n}\)
Để đây là phép chia hết thì 9-n>=0 và n-3>=0 và n-6>=0 và 10-n>=0
=>n<=9 và n>=6
=>n thuộc {6;7;8;9}
Cho n là một số tự nhiên lẻ. Ta có: \(6^n\div\left(-2\right)^n\)\(=k^n\). Vậy \(k=\)?
\(6^n:\left(-2\right)^n=k^n\)
\(\left[6:\left(-2\right)\right]^n=k^n\)
\(\Rightarrow6:\left(-2\right)=k\)
\(\Rightarrow k=-3\)
a, tìm n là số tự nhiên để (n+1)2+(n+2)2+(n+3)2=(n+10)2
b,cho n+h+b+k chia hết cho 6, tìm n,h,b,k là số tự nhiên lớn hơn 1 để n^2+h^2+b^2+k^2 là số nguyên tố
a) \(\left(n+1\right)^2+\left(n+2\right)^2+\left(n+3\right)^2=\left(n+10\right)^2\)
\(\Leftrightarrow n^2+2n+1+n^2+4n+4+n^2+6n+9=n^2+20n+100\)
\(\Leftrightarrow2n^2-8n-86=0\)
\(\Leftrightarrow n^2-4n=43\)
Ta có: \(n^2-4n=n^2-n-3n=n\left(n-1\right)-3n\)
\(n\left(n-1\right)\)là tích hai số tự nhiên liên tiếp nên khi chia cho \(3\)dư \(0\)hoặc \(2\).
Suy ra \(n^2-4n\)chia cho \(3\)dư \(0\)hoặc \(2\).
Mà \(43\)chia cho \(3\)dư \(1\)
do đó phương trình đã cho không có nghiệm tự nhiên.
b) Ta có: \(n^2+h^2+b^2+k^2+n+h+b+k=\left(n^2+n\right)+\left(h^2+h\right)+\left(b^2+b\right)+\left(k^2+k\right)\)
\(=n\left(n+1\right)+h\left(h+1\right)+b\left(b+1\right)+k\left(k+1\right)\)chia hết cho \(2\).
mà \(n+h+b+k\)chia hết cho \(6\)nên chia hết cho \(2\)
suy ra \(n^2+h^2+b^2+k^2\)chia hết cho \(2\)suy ra không phải là số nguyên tố
(do \(n^2+h^2+b^2+k^2>2\)).
Cho số nguyên tố \(p=4k+1\left(k\in N;k>0\right)\)
∃ hay không một số tự nhiên n thỏa mãn \(n^2+2^n\)là \(B\left(2p\right)?\)
Ta có: \(\hept{\begin{cases}4k\equiv-1\left(modp\right)\\4k-1\equiv-2\left(modp\right)\end{cases}}\)
\(\Rightarrow\left(4k\right)!\equiv\left[\left(2k\right)!\right]^2\left(modp\right)\)
Theo định lý Wilson kết hợp với định lý Fecma nhỏ ta có:
Với \(n=4k\left(2k\right)!\) thì:
\(2^n-1\left[2^{\left(2k\right)!}\right]^{4k}-1\equiv0\left(modp\right)\)
\(\Rightarrow n^2+2^n=\left[4k.\left(2k\right)!\right]^2+2^{4k\left(2k\right)!}\equiv0\left(modp\right)\)
\(\Rightarrow\) Có vô số giá trị của \(n\) thỏa mãn.
Cho n là số nguyên dương, k là số tự nhiên lẻ. Chứng Minh Rằng:
\(1^k+2^k+3^k+...+n^k\)chia hết cho\(\left(1+2+3+...+n\right)\)
Ta có (ak+bk)\(⋮\)(a+b) với k = 2t+1, t\(\in\)N, a2+b2\(\ne\)0
A=1k+2k+...+(n-1)k+nk ; 2B=2(1+2+...+n)=n(n+1)
2A=[(1k+nk)+(2k+(n-1)k+... ]\(⋮\)(n+1)
2A=2[(1k+(n-1)k)+(2k+(n-2)k)+...+nk ] \(⋮\)n
Vậy A \(⋮\)B
tìm tất cả các số nguyên có dạng :\(\frac{n\left(n+1\right)\left(n+2\right)}{6}+1\) với n là số tự nhiên
\(n\left(n+1\right)\left(n+2\right)⋮3\)
\(n\left(n+1\right)\left(n+2\right)⋮2\)
Có ƯCLN (2,3) = 1
Nên: \(n\left(n+1\right)\left(n+2\right)⋮2.3=6\)
Lại có: \(1=\frac{6}{6}⋮6\)
Vậy: \(\frac{n\left(n+1\right)\left(n+2\right)}{6}+1\)