cho A=1+2+2^2+2^3+...+2^2013+2^2014
a)tính A
b)CMR:A chia hết cho 31
Bài 1:Cho A=1+2+2^2+2^3+...+2^2013+2^2014
a,Tính A b,Chứng minh rằng A chia hết cho 31
a)Xét \(2A=2+2^2+....+2^{2015}\)
nên \(2A-A=2^{2015}-1\)
=>\(A=2^{2015}-1\)
b)Ta có :\(2^5=32\equiv-1\left(mod31\right)\)
=>\(2^{2015}\equiv-1\left(mod31\right)\)
=>\(2^{2015}-1\equiv-2\left(mod31\right)\)(kiểm tra lại đề bài đi bạn)
Cho A=1+2+2^2+2^3+...+2^2013+2^2014 a,Tính A b,CTR:A chia hết cho 31
a,A = 1 + 2 + 22 + 23 +.... + 22013 + 22014
2A = 2 + 22 + 23 + ...... + 22013 + 22014 + 22015
A = ( 2 + 22 + 23 + ..... + 22013 + 22014 + 22015 ) - ( 1 + 2 + 22 + 23 + ..... + 22013 + 22014 )
A = 22015 - 1
b, A = 1 + 2 + 22 + 23 + ... + 22013 + 22014
= ( 1 + 2 + 22 + 23 + 24 ) + .... + ( 22010 + 22011 + 22012 + 22013 + 22014 )
= 31 + ..... + 22010.( 1 + 2 + 22 + 23 + 24 )
= 31 + ..... + 22010 . 31
= 31.1 + ..... + 22010 . 31
= 31. ( 1 + .... + 22010 ) chia hết cho 31
=> A chia hết cho 31
a) \(A=1+2+2^2+2^3+....+2^{2014}\)
\(\Leftrightarrow\)\(2A=2+2^2+2^3+2^4+...+2^{2015}\)
\(\Leftrightarrow\)\(2A-A=\left(2+2^2+2^3+...+2^{2015}\right)-\left(1+2+2^2+...+2^{2014}\right)\)
\(\Leftrightarrow\)\(A=2^{2015}-1\)
b) \(A=1+2+2^2+2^3+...+2^{2014}\)
\(=\left(1+2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8+2^9\right)\)\(+...+\left(2^{2010}+2^{2011}+2^{2012}+2^{2013}+2^{2014}\right)\)
\(=\left(1+2+2^2+2^3+2^4\right)+2^5\left(1+2+2^2+2^3+2^4\right)\)\(+...+2^{2010}\left(1+2+2^2+2^3+2^4\right)\)
\(=\left(1+2+2^2+2^3+2^4\right)\left(1+2^5+...+2^{2010}\right)\)
\(=31\left(1+2^5+...+2^{2010}\right)\) \(⋮31\)
a; A = 1 + 2+ 22 + 23 +..................+ 22013 + 22014
2A = 2+ 22 + 23 +..................+ 22013 + 22015
2A - A = [ 2+ 22 + 23 +..................+ 22013 + 22015 ] - [ 1 + 2+ 22 + 23 +..................+ 22013 + 22014 ]
A = 22015 - 1
b; A= 1 + 2+ 22 + 23 +..................+ 22013 + 22014
A = [ 1 + 2+ 22 + 23 ] + [ 24 + 25 + 26 + 27 ] +[ 28+29+210+211 ]+..................+ [ 22011+ 22012+22013+ 22014 ]
A = 31 + 23 [1 + 2 +22 + 23 + 24 ] + 28 [ 1 + 2+ 22 + 23 ] + ................+ 22011 [ 1 + 2+ 22 + 23 ]
A = 31 + 23 .31 + 28 . 31 +....................+ 22011 . 31
A = 31 [ 23 + 28 +..........+ 22011 ]
Mà 31 chia hết cho 31 => 31 [ 23 + 28 +..........+ 22011 ] chia hết cho 31 hay A chia hết cho 31
Vậy bài toán được chứng minh
Cho A=21+22+23+.......+2100
a,Tính tổng A
b,CMR:A chia hết cho 30
c,CMR:A không chia hết cho 14
Lời giải:
a.
$A=2+2^2+2^3+...+2^{100}$
$2A=2^2+2^3+2^4+...+2^{101}$
$\Rightarrow 2A-A=2^{101}-2$
$\Rightarrow A=2^{101}-2$
b.
Hiển nhiên các số hạng của $A$ đều chẵn nên $A\vdots 2(1)$
Mặt khác:
$A=(2+2^2+2^3+2^4)+(2^5+2^6+2^7+2^8)+....+(2^{97}+2^{98}+2^{99}+2^{100})$
$=2(1+2+2^2+2^3)+2^5(1+2+2^2+2^3)+....+2^{97}(1+2+2^2+2^3)$
$=(1+2+2^2+2^3)(2+2^5+...+2^{97})=15(2+2^5+...+2^{97})\vdots 15(2)$
Từ $(1); (2)$ mà $(2,15)=1$ nên $A\vdots (2.15)$ hay $A\vdots 30$
$A=2+(2^2+2^3+2^4)+(2^5+2^6+2^7)+....+(2^{98}+2^{99}+2^{100})$
$=2+2^2(1+2+2^2)+2^5(1+2+2^2)+....+2^{98}(1+2+2^2)$
$=2+(1+2+2^2)(2^2+2^5+...+2^{98})$
$=2+7(2^2+2^5+...+2^{98})$
$\Rightarrow A$ không chia hết cho 7
$\Rightarrow A$ không chia hết cho 14.
Cho A=1*2*3*...*29,B=30*31*32*..*58.CMR:A+B chia hết cho 59
Ta có thể viết lại A và B dưới dạng:
A = 29!
B = (58!/29!) / 30
Ta sẽ chứng minh rằng A + B chia hết cho 59 bằng cách chứng minh rằng A ≡ -B (mod 59).
Đầu tiên, ta áp dụng định lý Wilson: (p-1)! ≡ -1 (mod p) nếu p là số nguyên tố. Áp dụng định lý này với p = 59, ta có:
58! ≡ -1 (mod 59)
Ta nhân cả hai vế của phương trình trên với 29!, ta được:
29!(58!) ≡ -29! (mod 59)
Nhưng ta biết rằng 29! ≡ A (mod 59) và (58!/29!) ≡ B (mod 59), do đó ta có:
A * B ≡ -A (mod 59)
Thêm A vào cả hai vế của phương trình, ta được:
A + A * B ≡ 0 (mod 59)
Nhưng ta biết rằng A + B = 29! + (58!/29!) / 30, do đó:
A + B ≡ A + A * B (mod 59)
Vậy ta kết luận được rằng A + B chia hết cho 59.
Cho A=1+5+5^2+...+5^11.
CMR:a,A chia hết 6. b,A chia hết 31
a, A = 1 + 5 +52 + .. + 511
A = ( 1+5 ) + ( 52 + 53) +...+ ( 510 + 511)
A = 6 + 52. 6 + ... + 510 .6
A = 6 . (1+52 + ...+ 510 )
=> A \(⋮\) 6
b, A = 1 + 5 +52 + .. + 511
A = ( 1 + 5 +52 ) + ( 53 + 54 +55 ) + ... + ( 59 + 510 + 511)
A= 31 + 31 . 53+ ... + 31.59
A = 31 . ( 1 + 53 + ... + 59 )
=> A\(⋮\) 31
Bài 1:CMR:11.a+2.b dấu mũi tên hai chiều 18.a+5.b chia hết cho 19
Bài 2:Cho số tự nhiên a không chia hết cho 2 và 3 .CMR:A=4.a2+3.a+5 chia hết cho 6
Bài 3:CMR:n2+n+2 không chia hết cho 5,với mọi n thuộc N
Bài 4:CMR:a3-5.a chia hết cho 6 với mọi a thuộc N ,lớn hơn 1
Bai 5:CMR:a+2.b chia het cho 3 khi và chỉ khi b+2.a chia hết cho 3
( Làm chi tiết vào nha !)
Mấy bạn làm hộ mình nha , bài khó quá không biết làm thế nào nữa.Xin trân thành cảm ơn nếu các bạn làm chi tiết.
1+2+3+...+120 và cho A= 2 mũ 2011+2 mũ 2012+ 2 mũ 2013+ 2 mũ 2014+ 2 mũ 2015.chứng tỏ A chia hết cho 31
-Cho a,b thuộc Z thỏa (a^2-ab+b^2) chia hết cho 2. Chứng minh(a^3+b^3) chia hết cho 8
-Tìm hai số nguyên liên tiếp mà hiệu các bình phương của hai số đó bằng 2013
-Tìm các số nguyên n để 2013/[(4n^2)-4n+3] có giá trị nguyên
-Cho biết tồn tại hai số thực a,b khác 0 thỏa 1/a -1/b =1/ab. Tính giá trị M= (a^3 - b^3 +1)/(a^2 + b^2 -1)
Bài 2:
Gọi hai số cần tìm là a;a+1
Theo đề, ta có:
\(\left(a+1\right)^2-a^2=2013\)
=>2a+1=2013
=>2a=2012
hay a=1006
Vậy: hai số cần tìm là 1006 và 1007
Cho a và b là 2 số lẻ chia hết cho 3. CMR:a^2-b^2 chia hết cho 24