cho \(\frac{a}{b+c}\)+\(\frac{b}{c+a}\)+\(\frac{c}{a+b}\)=1
chứng minh rằng \(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}=0\)
Cho a;b;c .0. Chứng minh rằng:
\(\frac{a^2}{b^2+c^2}+\frac{b^2}{a^2+c^2}+\frac{c}{a^2+b^2}\ge\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)
Cho \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=0\). Chứng minh rằng \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=1\)
Cho \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=1\)
Chứng minh rằng \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=0\)
cho a,b,c là 3 số khác 0. chứng minh rằng:
\(\frac{a}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\)
mình nghĩ đề bài sai một chỗ :\(\frac{a^2}{b^2}\)chứ ko phải là \(\frac{a}{b^2}\)
mình chịu thôi bạn ơi mình mới học lớp 5 ak
Cho a,b,c>0.Chứng minh rằng:
\(\frac{a^3}{b^2}+\frac{b^3}{c^2}+\frac{c^3}{a^2}\ge\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\)
Cho a,b,c>0.Chứng minh rằng:
\(\frac{a^3}{b^2}+\frac{b^3}{c^2}+\frac{c^3}{a^2}\ge\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\)
áp dụng dbt cosi cho 2 số:\(\frac{a^3}{b^2}\)va b ta duoc :
\(\frac{a^3}{b^2}\)+a\(\ge\)2\(\sqrt{\frac{a^3}{b^2}.a}\)=2\(\frac{a^2}{b}\)
CMTT:\(\frac{b^3}{c^2}\)+b\(\ge\)2\(\frac{b^2}{c}\)
\(\frac{c^3}{a^2}\)+c\(\ge\)2\(\frac{c^2}{a}\)
\(\Rightarrow\)\(\frac{a^3}{b^2}\)+\(\frac{b^3}{c^2}\)+\(\frac{c^3}{a^2}\)+(a+b+c)\(\ge\)2(\(\frac{a^2}{b}\)+\(\frac{b^2}{c}\)+\(\frac{c^2}{a}\))
\(\Leftrightarrow\)\(\frac{a^3}{b^2}\)+\(\frac{b^3}{c^2}\)+\(\frac{c^3}{a^2}\)\(\ge\)2(\(\frac{a^2}{b}\)+\(\frac{b^2}{c}\)+\(\frac{c^2}{a}\)) - (a+b+c) (1)
Ap dụng bdt cosi cho các số dương , ta được:
\(\frac{a^2}{b}\)+\(b\)\(\ge\)2\(\sqrt{\frac{a^2}{b}.b}\)=2a
CMTT: \(\frac{b^2}{c}\)+c\(\ge\)2b
\(\frac{c^2}{a}\)+a\(\ge\)2c
\(\Rightarrow\)\(\frac{a^2}{b}\)+\(\frac{b^2}{c}\)+\(\frac{c^2}{a}\)+(a+b+c) \(\ge\)2(a+b+c)
\(\Leftrightarrow\)\(\frac{a^2}{b}\)+\(\frac{b^2}{c}\)+\(\frac{c^2}{a}\)\(\ge\)a+b+c
\(\Leftrightarrow\)\(\frac{a^2}{b}\)+\(\frac{b^2}{c}\)+\(\frac{c^2}{a}\) _ (a + b + c ) \(\ge\)0
Do Đó:TỪ (1) ta co : \(\frac{a^3}{b^2}\)+\(\frac{b^3}{c^2}\)+\(\frac{b^3}{c^2}\)\(\ge\)(\(\frac{a^2}{b}\)+\(\frac{b^2}{c}\)+\(\frac{c^2}{a}\) )
Xét hiệu hai vế:
BĐT \(\Leftrightarrow\left(\frac{a^3}{b^2}-\frac{a^2b}{b^2}\right)+\left(\frac{b^3}{c^2}-\frac{b^2c}{c^2}\right)+\left(\frac{c^3}{a^2}-\frac{c^2a}{a^2}\right)-\left(a+b+c-b-c-a\right)\ge0\)
\(\Leftrightarrow\left(\frac{a^3}{b^2}-\frac{a^2b}{b^2}\right)+\left(\frac{b^3}{c^2}-\frac{b^2c}{c^2}\right)+\left(\frac{c^3}{a^2}-\frac{c^2a}{a^2}\right)-\left[\left(a-b\right)+\left(b-c\right)+\left(c-a\right)\right]\ge0\)
\(\Leftrightarrow\left(\frac{a^2}{b^2}\left(a-b\right)-\left(a-b\right)\right)+\left(\frac{b^2}{c^2}\left(b-c\right)-\left(b-c\right)\right)+\left(\frac{c^2}{a^2}\left(c-a\right)-\left(c-a\right)\right)\ge0\)
\(\Leftrightarrow\frac{\left(a+b\right)\left(a-b\right)^2}{b^2}+\frac{\left(b+c\right)\left(b-c\right)^2}{c^2}+\frac{\left(c+a\right)\left(c-a\right)^2}{a^2}\ge0\)
BĐT này đúng với mọi a,b,c > 0 nên ta có Q.E.D
Dấu "=" xảy ra khi a =b =c
P/s: Toán 7 gì mà khó thế nhỉ??Mình cũng không chắc đâu nha!
trả lời
=> bé hơn hoặc bằng 0
chúc bn
thành công trong
học tập
Cho a, b, c ≠ 0, chứng minh rằng: \(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\) ≥ \(\frac{c}{b}+\frac{b}{a}+\frac{a}{c}\)
\(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2b^2}{b^2c^2}}=2\left|\frac{a}{c}\right|\ge\frac{2a}{c}\)
Tương tự: \(\frac{a^2}{b^2}+\frac{c^2}{a^2}\ge\frac{2c}{b}\) ; \(\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{2b}{a}\)
Cộng vế với vế:
\(2\left(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\right)\ge2\left(\frac{c}{b}+\frac{b}{a}+\frac{a}{c}\right)\)
Dấu "=" xảy ra khi \(a=b=c\)
cho a=<b=<c=<0. chứng minh rằng \(\frac{2a^2}{b+c}+\frac{2b^2}{c+a}+\frac{2c^2}{a+b}\le\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\)
Cho em hỏi bài này ạ \(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{c+b}=0\)và a+b+c khác 0.Chứng minh rằng \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{c+b}=1\)
Ta có :\(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}=0\)
=> \(a\left(\frac{a}{b+c}\right)+b\left(\frac{b}{a+c}\right)+c\left(\frac{c}{a+b}\right)=0\)
=> \(a\left(\frac{a}{b+c}+1-1\right)+b\left(\frac{b}{a+c}+1-1\right)+c\left(\frac{c}{a+b}+1-1\right)=0\)
=> \(a\left(\frac{a+b+c}{b+c}-1\right)+b\left(\frac{a+b+c}{a+c}-1\right)+c\left(\frac{a+b+c}{a+b}-1\right)=0\)
=> \(a.\frac{a+b+c}{b+c}-a+b.\frac{a+b+c}{a+c}-b+c.\frac{a+b+c}{a+b}-c=0\)
=> \(\left(a+b+c\right).\frac{a}{b+c}+\left(a+b+c\right).\frac{b}{a+c}+\left(a+b+c\right).\frac{c}{a+b}-\left(a+b+c\right)=0\)
=> \(\left(a+b+c\right)\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}-1\right)=0\)
=> \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}-1=0\left(\text{Vì }a+b+c\ne0\right)\)
=> \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=1\)(đpcm)
Cho \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=1\). Chứng minh rằng:
\(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}=0\)
Có :a^2/b+c + b^2/c+a + c^2/a+b
= a.(a/b+c) + b.(b/c+a) + c.(c/a+b)
= a.(a/b+c + 1 - 1) + b.(b/c+a + 1 - 1) + c.(c/a+b + 1 - 1)
= a. a+b+c/b+c + b. a+b+c/c+a + c. a+b+c/a+b - (a+b+c)
= (a+b+c).(a/b+c + b/c+a + c/a+b) - (a+b+c)
= (a+b+c)-(a+b+c)
= 0
=> ĐPCM
Tk mk nha