Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Đình Nhật Long
Xem chi tiết
Yeutoanhoc
4 tháng 5 2021 lúc 8:15

$x^4-6x^2+15\\=x^4-3x^2-3x^2+9+6\\=x^2(x^2-3)-3(x^2-3)+6\\=(x^2-3)(x^2-3)+6\\=(x^2-3)^2+6\\(x^2-3)^2 \geq 0\\\to (x^2-3)^2+6 \geq 6>0\\\to x^4-6x^2+9$ vô nghiệm

#Biinz_Tổng
Xem chi tiết
Nguyễn Tấn Phát
22 tháng 1 2020 lúc 12:45

\(\text{CM vô nghiệm}\)
\(\text{a) }\left(x-2\right)^3=\left(x-2\right).\left(x^2+2x+4\right)-6\left(x-1\right)^2\)
\(\Leftrightarrow x^3-6x^2+12x-8=x^3-8-6\left(x^2-2x+1\right)\)
\(\Leftrightarrow x^3-6x^2+12x-8=x^3-8-6x^2+12x-6\)
\(\Leftrightarrow x^3-6x^2+12x-x^3+6x-12x=-8+8-6\)
\(\Leftrightarrow0x=-6\text{ (vô lí)}\)
\(\text{Vậy }S=\varnothing\)

\(\text{b) }4x^2-12x+10=0\)
\(\Leftrightarrow\left(4x^2-12x+9\right)+1=0\)
\(\Leftrightarrow\left(2x-3\right)^2+1=0\)
\(\Leftrightarrow\left(2x-3\right)^2=-1\text{ (vô lí)}\)
\(\text{Vậy }S=\varnothing\)

\(\text{CM vô số nghiệm}\)
       \(\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)^3-3x\left(x+1\right)\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left[\left(x+1\right)^2-3x\right]\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left(x^2+2x+1-3x\right)\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left(x^2-x+1\right)\text{ (luôn luôn đúng)}\)
\(\text{Vậy }S\inℝ\)

Khách vãng lai đã xóa
Thịnh Nguyễn
Xem chi tiết
Ngốc Trần
Xem chi tiết
VNĐ Vlog
Xem chi tiết
Nguyễn Anh Quân
9 tháng 1 2018 lúc 21:07

x^4+x^3+x^2+x+1 = 0

Ta thấy x=1 ko là nghiệm => x khác 1 => x-1 khác 0

=> (x-1).(x^4+x^3+x^2+x+1) = 0

<=> x^5-1=0

<=> x^5=1=1^5

<=> x=1 ( ko tm )

Vậy pt vô nghiệm

Tk mk nha

Nguyễn Bảo Trân
Xem chi tiết
Nguyễn Ngọc Huy Toàn
4 tháng 4 2022 lúc 19:12

Ta có: 

\(\left(x-4\right)^2\ge0\)

\(\left(x+5\right)^2\ge0\)

\(\Rightarrow\left(x-4\right)^2+\left(x+5\right)^2=0\) khi

\(\left\{{}\begin{matrix}\left(x-4\right)^2=0\\\left(x+5\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x-4=0\\x+5=0\end{matrix}\right.\) => không có giá trị x nào thỏa mãn

=> đa thức vô nghiệm

Trần Đình Hoàng Quân
Xem chi tiết

P(\(x\)) = \(x^4\) + 3\(x^2\) - 4033 

P(\(x\)) = \(x^4\) + 2.\(\dfrac{3}{2}\)\(x^2\) + \(\dfrac{9}{4}\) - \(\dfrac{16141}{4}\)

P(\(x\)) = (\(x^2\) + \(\dfrac{3}{2}\))2 - \(\dfrac{16141}{4}\)

P(\(x\)) = 0 ⇔ (\(x^2\) + \(\dfrac{3}{2}\))2 - \(\dfrac{16141}{4}\) = 0

              ⇒ (\(x^2\) + \(\dfrac{3}{2}\))2 = \(\dfrac{16141}{4}\) 

                     \(x^2\) + \(\dfrac{3}{2}\) = - \(\sqrt{\dfrac{16141}{4}}\) (loại)

                      \(x^2\) + \(\dfrac{3}{2}\) = \(\sqrt{\dfrac{16141}{4}}\) 

                     \(x^2\)  = \(\sqrt{\dfrac{16141}{4}}\) - \(\dfrac{3}{2}\) > 0

                     \(x\) = \(\mp\) \(\sqrt{\sqrt{\dfrac{16141}{4}}-\dfrac{3}{2}}\)

      Vậy việc chứng minh: P(\(x\)) vô nghiệm là không xảy ra 

Dang Tung
15 tháng 6 2023 lúc 10:06

Sửa đề : `P(x)=x^{4}+3x^{2}+4033`

Ta thấy : `x^{4},3x^{2}\ge0` với mọi `x`

`=>x^{4}+3x^{2}\ge0`

`=>P(x)=x^{4}+3x^{2}+4033\ge 4033>0`

Vậy `P(x)` vô nghiệm ( Do không có giá trị x thỏa mãn để `P(x)=0` )

Nguyễn Ngọc Minh
Xem chi tiết
Nguyễn Kim Thành
Xem chi tiết
Nguyễn Quang Hải
9 tháng 5 2018 lúc 22:33

   x8-x7+x4-x+1

=( x8-x7) -(x-1)+x4

=x(x-1)-(x-1)+x4

=(x-1)(x-1)+x4

=(x-1)2+x4

mà (x-1)2\(\ge\)0

      x4   \(\ge\)0

=> (x-1)2+x4  \(\ge\)  0

Vậy x8-x7+x4-x+1 \(\ge\)  0

=> đa thức trên vô nghiệm