cho B(x)=-x^4-x^2-8.chứng minh b(x) vô nghiệm
chứng minh đa thức vô nghiệm B(x) = \(x^4-6x^2+15\)
$x^4-6x^2+15\\=x^4-3x^2-3x^2+9+6\\=x^2(x^2-3)-3(x^2-3)+6\\=(x^2-3)(x^2-3)+6\\=(x^2-3)^2+6\\(x^2-3)^2 \geq 0\\\to (x^2-3)^2+6 \geq 6>0\\\to x^4-6x^2+9$ vô nghiệm
Chứng minh các phương trình sau vô nghiệm:
a) (x-2)3=(x-2).(x2+2x+4)-6.(x-1)2
b)4x2-12x+10=0
Chứng minh các phương trình sau vô số nghiệm:
(x+1).(x2-x-1)=(x+1)3-3x.(x+1)
\(\text{CM vô nghiệm}\)
\(\text{a) }\left(x-2\right)^3=\left(x-2\right).\left(x^2+2x+4\right)-6\left(x-1\right)^2\)
\(\Leftrightarrow x^3-6x^2+12x-8=x^3-8-6\left(x^2-2x+1\right)\)
\(\Leftrightarrow x^3-6x^2+12x-8=x^3-8-6x^2+12x-6\)
\(\Leftrightarrow x^3-6x^2+12x-x^3+6x-12x=-8+8-6\)
\(\Leftrightarrow0x=-6\text{ (vô lí)}\)
\(\text{Vậy }S=\varnothing\)
\(\text{b) }4x^2-12x+10=0\)
\(\Leftrightarrow\left(4x^2-12x+9\right)+1=0\)
\(\Leftrightarrow\left(2x-3\right)^2+1=0\)
\(\Leftrightarrow\left(2x-3\right)^2=-1\text{ (vô lí)}\)
\(\text{Vậy }S=\varnothing\)
\(\text{CM vô số nghiệm}\)
\(\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)^3-3x\left(x+1\right)\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left[\left(x+1\right)^2-3x\right]\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left(x^2+2x+1-3x\right)\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left(x^2-x+1\right)\text{ (luôn luôn đúng)}\)
\(\text{Vậy }S\inℝ\)
chứng minh đa thức sau vô nghiệm: B= x^10-x^7+x^4-x+1
a) Cho f(x) thỏa mãn: x.f(x-2) = (x-4) f(x)
Chứng minh rằng: Đa thức có ít nhất 2 nghiệm
b) Biết (x-1) . f(x) = (x+4) . f(x+8) với mọi x
Chứng minh rằng: f(x) có ít nhất 2 nghiệm
Chứng Minh x^4+x^3+x^2+x+1 vô nghiệm
x^4+x^3+x^2+x+1 = 0
Ta thấy x=1 ko là nghiệm => x khác 1 => x-1 khác 0
=> (x-1).(x^4+x^3+x^2+x+1) = 0
<=> x^5-1=0
<=> x^5=1=1^5
<=> x=1 ( ko tm )
Vậy pt vô nghiệm
Tk mk nha
chứng minh đa thức sau vô nghiệm : \(( x - 4 )^2 + ( x + 5 )^2\)
Ta có:
\(\left(x-4\right)^2\ge0\)
\(\left(x+5\right)^2\ge0\)
\(\Rightarrow\left(x-4\right)^2+\left(x+5\right)^2=0\) khi
\(\left\{{}\begin{matrix}\left(x-4\right)^2=0\\\left(x+5\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x-4=0\\x+5=0\end{matrix}\right.\) => không có giá trị x nào thỏa mãn
=> đa thức vô nghiệm
chứng minh P(x)=x\(^4\)+3x\(^2\)-4033 vô nghiệm
hellp!!!
P(\(x\)) = \(x^4\) + 3\(x^2\) - 4033
P(\(x\)) = \(x^4\) + 2.\(\dfrac{3}{2}\)\(x^2\) + \(\dfrac{9}{4}\) - \(\dfrac{16141}{4}\)
P(\(x\)) = (\(x^2\) + \(\dfrac{3}{2}\))2 - \(\dfrac{16141}{4}\)
P(\(x\)) = 0 ⇔ (\(x^2\) + \(\dfrac{3}{2}\))2 - \(\dfrac{16141}{4}\) = 0
⇒ (\(x^2\) + \(\dfrac{3}{2}\))2 = \(\dfrac{16141}{4}\)
\(x^2\) + \(\dfrac{3}{2}\) = - \(\sqrt{\dfrac{16141}{4}}\) (loại)
\(x^2\) + \(\dfrac{3}{2}\) = \(\sqrt{\dfrac{16141}{4}}\)
\(x^2\) = \(\sqrt{\dfrac{16141}{4}}\) - \(\dfrac{3}{2}\) > 0
\(x\) = \(\mp\) \(\sqrt{\sqrt{\dfrac{16141}{4}}-\dfrac{3}{2}}\)
Vậy việc chứng minh: P(\(x\)) vô nghiệm là không xảy ra
Sửa đề : `P(x)=x^{4}+3x^{2}+4033`
Ta thấy : `x^{4},3x^{2}\ge0` với mọi `x`
`=>x^{4}+3x^{2}\ge0`
`=>P(x)=x^{4}+3x^{2}+4033\ge 4033>0`
Vậy `P(x)` vô nghiệm ( Do không có giá trị x thỏa mãn để `P(x)=0` )
T(x) = 6x4 - 13x - 3
H(x) = 8x4 + 2x3 -17x +1
a) Tìm nghiệm của T(x) và chứng minh H(x) không có nghiệm âm
b) Chứng minh rằng H(x) vô nghiệm với mọi giá trị x.
Chứng minh đa thức sau vô nghiệm:
x8 - x7 + x4 - x +1
x8-x7+x4-x+1
=( x8-x7) -(x-1)+x4
=x(x-1)-(x-1)+x4
=(x-1)(x-1)+x4
=(x-1)2+x4
mà (x-1)2\(\ge\)0
x4 \(\ge\)0
=> (x-1)2+x4 \(\ge\) 0
Vậy x8-x7+x4-x+1 \(\ge\) 0
=> đa thức trên vô nghiệm