mọi người cho e hỏi cái này tí ạ
chứng minh 1+2^2k+1+3^2k+1+...+n^2k+1 chia hết (2k+1)^2 với n=2k+1
Cho p là số nguyên tố lẻ. Chứng minh rằng với mọi \(k\in N\), ta luôn có:
\(S=1^{2k+1}+2^{2k+1}+...+\left(p-1\right)^{2k+1}\) chia hết cho p
Cho a và b là 2 số tự nhiên liên tiếp (a<b). Chứng minh a và b nguyên tố cùng nhau.
Giải:
Vì a và b là 2 số tự nhiên liên tiếp
=> a.b chia hết cho 2
Vì b>a => a có dạng 2k, b có dạng 2k+1 (k thuộc N*)
=> a.b có dạng 2k.(2k+1)
Gọi ƯCLN(2k;2k+1) = d (d thuộc N*)
=> 2k chia hết cho d ; 2k+1 chia hết cho d
=> (2k+1)-2k chia hết cho d
=> 2k+1-2k chia hết cho d
=> 1 chia hết cho d
=> d=1
=> ƯCLN(a;b)=1
=> a và b là 2 số nguyên tố cùng nhau.
Mình giải như vây có đúng không?
theo mình thế này mới đúng
Vì a < b và a và b là 2 số tự nhiên liên tiếp => b = a + 1
Gọi ƯCLN(a,b) = d
=> \(\begin{cases}a⋮d\\b⋮d\end{cases}=>\orbr{\begin{cases}a⋮d\\a+1⋮d\end{cases}}\)
=> \(a+1-a⋮d=>1⋮d\)
=> \(d\inƯ\left(1\right)=>d=1\)
Vì (a,b) = 1 => a và b là 2 số nguyên tố cùng nhau
Nếu a<b thì b=a+1 rồi làm tượng tự từ chỗ " Gọi....." thôi. Ko cần phải dài dòng như vậy đâu, bài này mk làm nhiều rồi
nhưng mình hỏi là đúng hay sai mà chứ không bảo các bạn làm cách khác
Cho a và b là 2 số tự nhiên liên tiếp (a<b). Chứng minh a và b nguyên tố cùng nhau.
Giải:
Vì a và b là 2 số tự nhiên liên tiếp
=> a.b chia hết cho 2
Vì b>a => a có dạng 2k, b có dạng 2k+1 (k thuộc N*)
=> a.b có dạng 2k.(2k+1)
Gọi ƯCLN(2k;2k+1) = d (d thuộc N*)
=> 2k chia hết cho d ; 2k+1 chia hết cho d
=> (2k+1)-2k chia hết cho d
=> 2k+1-2k chia hết cho d
=> 1 chia hết cho d
=> d=1
=> ƯCLN(a;b)=1
=> a và b là 2 số nguyên tố cùng nhau.
Mình giải như vây có đúng không?
a cũng có thể là \(2k+1\Rightarrow b=2k+2\), bạn làm thiếu.
Nói chung, bài toán giống như đi từ trong nhà ra cổng. Thay vì đi thẳng ra ngoài cổng, việc bạn làm giống như đi vài vòng quanh vườn xong mới chịu ra cổng vậy :D
Làm thế này có phải đơn giản, chính xác và dễ hiểu ko:
Do a và b là 2 STN liên tiếp \(\Rightarrow b=a+1\)
Gọi ƯCLN của a và b là d \(\RightarrowƯCLN\left(a;a+1\right)=d\)
\(\Rightarrow\left\{{}\begin{matrix}a⋮d\\\left(a+1\right)⋮d\end{matrix}\right.\) \(\Rightarrow\left(a+1\right)-a⋮d\Rightarrow1⋮d\Rightarrow d=1\)
\(\Rightarrow a;b\) nguyên tố cùng nhau
Chứng minh rằng, với các số tự nhiên k,n tùy ý, số \(1^{2k-1}+2^{2k-1}+....+\left(2n\right)^{2k-1}\) chia hết cho 2n+1
dạng tổng quát của số chia hết cho 2 là 2k dạng tổng quát chia cho 2 dư 1 là 2k + 1 với k E N hãy viết dạng tổng quát của số chia hết cho 3 số chia hết cho 3 dư 1,2
Dạng tổng quát của số chia hết cho 3 số chia cho 3 dư 1 là 3k+1 , số chia cho 3 dư 2 là 3k+2 với k \(\in\) N
CÔNG CHÚA BĂNG GIÁ COPY
Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
VÀO MÀ XEM
đúng copy thật mk chỉ nói đúng sự thật
Duoi day la cach giai cua mot bai tuong tu nhu vay
Tich cua 2 so tu nhien lien tiep thi chia het cho 2
Giai
Ta xet thay hai truong hop n chia het cho 2, n chia cho 2 du 1
Truong hop 1 n chia het cho 2
n co dang la 2k (k €N)
n.(n+1)=2k.(2k+1) chia duoc co 2
Truong hop 2 n chia cho 2 du 1
n co dang la n= 2k+1 ( k€n)
n.(n+1)=(2k+1).2.[(2k+1)+1]=(2k+1).(2k+2)
n.(n+1)=(2k+1).2(k+1) chia duoc cho 2
Lam giup minh bai tren theo cach giai nay nhe
a)chứng minh rằng (5n+7).(4n+6) chia hết cho 2
b)(8n+1).(6m+5)
(xét n=2k , m=2k+1)
tại sao:(n+1)(n-1)(n+3) = (2k+4)(2k+2) (2k với n = 2k,k\(\in\)N)
Đề sai rồi:
Thay n=2k vào pt trên ta đc:
(n+1)(n-1)(n+3)=(n+4)(n+2)(n+3)
=>(n+1)(n-1)=(n+4)(n+2) (sai rồi)
Với mọi N lẻ chứng minh rằng (n+1) x (n+3) chia hết cho 8 biết n=2K +1