c/m:
\(\sqrt{3}+\sqrt{8}< 5\)
A=\(\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}+\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\)
cho mình hỏi, câu này mình có đáp án nhưng mình chưa có hiểu có chỗ ra bằng =\(\frac{8+2\sqrt{15}}{5-3}+\frac{8-2\sqrt{15}}{5-3}\)
làm thế nào ra được kết quả như vậy được ạ? mn giải thích giúp mình với.
Nhớ không nhầm thì gọi là trục căn thức ở mẫu thì phải, cậu dở lại lý thuyết coi nha :v
\(A=\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}+\frac{\sqrt{5}-3}{\sqrt{5}+\sqrt{3}}\)
\(=\frac{\left(\sqrt{5}+\sqrt{3}\right)^2}{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}+\frac{\left(\sqrt{5}-\sqrt{3}\right)^2}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}\)
\(=\frac{5+2\sqrt{18}+3}{5-3}+\frac{5-2\sqrt{18}+3}{5-3}\)
\(=\frac{8+6\sqrt{2}}{2}+\frac{8-6\sqrt{2}}{2}\)
\(=\frac{16}{2}\)
\(=8\)
Vậy...
c/m:\(\sqrt{2\sqrt{3\sqrt{4\sqrt{5\sqrt{6\sqrt{7\sqrt{8.....\sqrt{1999\sqrt{2000}}}}}}}}}< 3\)
Có cách giải nhưng t ko chắc đâu nhá;) đã bảo đưa dạng a, b, c rồi mà cứ đưa dạng này-_-
\(VT< \sqrt{2\sqrt{3\sqrt{4\sqrt{5\sqrt{6....}}}}}=x>0\) (vô hạn dấu căn). Ta sẽ chứng minh x < 3
Ta thấy \(x^2=\sqrt{2}.x\Rightarrow x\left(x-\sqrt{2}\right)=0\Rightarrow x=\sqrt{2}< 3\Rightarrow\text{đpcm }\)
\(x^2=2\sqrt{3\sqrt{4\sqrt{5....\sqrt{2000}}}}ma?\)
link tha khảo
link : https://olm.vn/hoi-dap/detail/69408192260.html
hok tốt
Các bạn giúp mik giải bài này trong hôm nay hoặc sáng mai nhé!Chiều mai mik phải nộp rùi!:))))))))))))
\(\dfrac{\sqrt{30}-\sqrt{2}}{\sqrt{8}-\sqrt{15}}\sqrt{8-\sqrt{49+8\sqrt{3}}}\)
\(\dfrac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\dfrac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2+\sqrt{3}}}\)
\(\dfrac{\sqrt{2}}{2\sqrt{2}+\sqrt{3+\sqrt{5}}}+\dfrac{\sqrt{2}}{2\sqrt{2}-\sqrt{3+\sqrt{5}}}\)
Cảm ơn các bạn nhiều!:)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
Mấy bài này rất dài , đăng từ từ thôi nhé bạn .
\(1.\dfrac{\sqrt{30}-\sqrt{2}}{\sqrt{8}-\sqrt{15}}-\sqrt{8-\sqrt{49+8\sqrt{3}}}=\dfrac{\sqrt{60}-\sqrt{4}}{\sqrt{16-2\sqrt{15}}}-\sqrt{8-\sqrt{48+2.4\sqrt{3}+1}}=\dfrac{2\left(\sqrt{15}-1\right)}{\sqrt{\left(\sqrt{15}-1\right)^2}}-\sqrt{8-|4\sqrt{3}+1|}=2-\sqrt{4-2.2\sqrt{3}+3}=2-|2-\sqrt{3}|=\sqrt{3}\)
\(2.\dfrac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\dfrac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}=\dfrac{2\sqrt{2}+\sqrt{6}}{\sqrt{4}+\sqrt{4+2\sqrt{3}}}+\dfrac{2\sqrt{2}-\sqrt{6}}{\sqrt{4}-\sqrt{4-2\sqrt{3}}}=\dfrac{2\sqrt{2}+\sqrt{6}}{2+\sqrt{\left(\sqrt{3}+1\right)^2}}+\dfrac{2\sqrt{2}-\sqrt{6}}{2-\sqrt{\left(\sqrt{3}-1\right)^2}}=\dfrac{2\sqrt{2}+\sqrt{6}}{2+|\sqrt{3}+1|}+\dfrac{2\sqrt{2}-\sqrt{6}}{2-|\sqrt{3}-1|}=\dfrac{2\sqrt{2}-\sqrt{6}}{3-\sqrt{3}}+\dfrac{2\sqrt{2}+\sqrt{6}}{3+\sqrt{3}}=\dfrac{12\sqrt{2}-2\sqrt{18}}{9-3}=\dfrac{12\sqrt{2}-6\sqrt{2}}{6}=\dfrac{6\sqrt{2}}{6}=\sqrt{2}\)
\(3.\dfrac{\sqrt{2}}{2\sqrt{2}+\sqrt{3+\sqrt{5}}}+\dfrac{\sqrt{2}}{2\sqrt{2}-\sqrt{3-\sqrt{5}}}=\dfrac{2}{4+\sqrt{5+2\sqrt{5}+1}}+\dfrac{2}{4-\sqrt{5-2\sqrt{5}+1}}=\dfrac{2}{4+|\sqrt{5}+1|}+\dfrac{2}{4-|\sqrt{5}-1|}=\dfrac{2}{\sqrt{5}+5}+\dfrac{2}{5-\sqrt{5}}=\dfrac{10-2\sqrt{5}+10+2\sqrt{5}}{20}=\dfrac{20}{20}=1\)
rút gọn các biểu thức sau:
a \(\sqrt[3]{8\sqrt{5}-16}.\sqrt[3]{8\sqrt{5}+16}\)
b \(\sqrt[3]{7-5\sqrt{2}}-\sqrt[6]{8}\)
c \(\sqrt[3]{4}.\sqrt[3]{1-\sqrt{3}}.\sqrt[6]{4+2\sqrt{3}}\)
d \(\dfrac{2}{\sqrt[3]{3}-1}-\dfrac{4}{\sqrt[3]{9}-\sqrt[3]{3}+1}\)
`c)root{3}{4}.root{3}{1-sqrt3}.root{6}{(sqrt3+1)^2}`
`=root{3}{4(1-sqrt3)}.root{3}{1+sqrt3}`
`=root{3}{4(1-sqrt3)(1+sqrt3)}`
`=root{3}{4(1-3)}=-2`
`d)2/(root{3}{3}-1)-4/(root{9}-root{3}{3}+1)`
`=(2(root{3}{9}+root{3}{3}+1))/(3-1)-(4(root{3}{3}+1))/(3+1)`
`=root{3}{9}+root{3}{3}+1-root{3}{3}-1`
`=root{3}{9}`
`a)root{3}{8sqrt5-16}.root{3}{8sqrt5+16}`
`=root{3}{(8sqrt5-16)(8sqrt5+16)}`
`=root{3}{320-256}`
`=root{3}{64}=4`
`b)root{3}{7-5sqrt2}-root{6}{8}`
`=root{3}{1-3.sqrt{2}+3.2.1-2sqrt2}-root{6}{(2)^3}`
`=root{3}{(1-sqrt2)^3}-sqrt2`
`=1-sqrt2-sqrt2=1-2sqrt2`
Rút gọn các biểu thức sau
a) $M=\sqrt{\dfrac{3 a}{7}}-2 \sqrt{\dfrac{7 a}{3}}+\sqrt{21 a};$
b) $N=\sqrt{\dfrac{8 x}{3}}-\sqrt{\dfrac{27 x}{2}}+\sqrt{6 x};$
c) $P=2 \sqrt{\dfrac{8 y}{5}}+\sqrt{\dfrac{45 y}{2}}-\sqrt{10 y}$.
a)\(\sqrt{\frac{3a}{7}}-2\sqrt{\frac{7a}{3}}+\sqrt{21a}\) =\(\sqrt{\frac{3}{7}.\frac{1}{21}.21a}\) - \(2\sqrt{\frac{7}{3}.\frac{1}{21}.21a}\)+ \(\sqrt{21}\)
=\(\sqrt{\frac{1}{49}.21a}\) - \(2\sqrt{\frac{1}{9}.21a}\)+\(\sqrt{21}\)
=\(\sqrt{\frac{1}{49}}.\sqrt{21a}\) - \(2.\sqrt{\frac{1}{9}}.\sqrt{21a}\)+ \(\sqrt{21a}\)
=\(\frac{1}{7}\sqrt{21a}\) - \(\frac{2}{3}\sqrt{21a}\) + \(\sqrt{21a}\)
=\(\frac{-10}{21}\sqrt{21a}\)
b)
N=\(\sqrt{\frac{8x}{3}}\) - \(\sqrt{\frac{27x}{2}}\) + \(\sqrt{6x}\)
=\(\sqrt{\frac{8}{3}.\frac{1}{6}.6x}\) - \(\sqrt{\frac{27}{2}.\frac{1}{6}.6x}\)+ \(\sqrt{6x}\)
=\(\frac{2}{3}\sqrt{6x}-\frac{3}{2}.\sqrt{6x}+\sqrt{6x}\)
=\(\frac{1}{6}\sqrt{6x}\)
em lớp 8 nene làm theo cách hiểu thôi ạ
c)P=\(2\sqrt{\frac{8y}{5}}\) + \(\sqrt{\frac{45y}{2}}\) - \(\sqrt{10y}\)
=\(2\sqrt{\frac{8}{5}.\frac{1}{10}.10y}\) + \(\sqrt{\frac{45}{2}.\frac{1}{10}.10y}\) - \(\sqrt{10y}\)
=\(2\sqrt{\frac{4}{25}.10y}\) + \(\sqrt{\frac{9}{4}.10y}\) - \(\sqrt{10y}\)
=\(2\).\(\sqrt{\frac{4}{25}}\) \(.\sqrt{10y}\) + \(\sqrt{\frac{9}{4}}.\sqrt{10y}\) - \(\sqrt{10y}\)
=\(\frac{4}{5}\sqrt{10y}\) + \(\frac{3}{2}\sqrt{10y}\) - \(\sqrt{10y}\)
=\(\frac{13}{10}\sqrt{10y}\)
Thu gọn
a) A=\(\dfrac{2\left(\sqrt{2}+\sqrt{6}\right)}{3\sqrt{2+\sqrt{3}}}\) b)B=\(\sqrt{8-2\sqrt{15}}-\sqrt{\left(3-3\sqrt{5}\right)^2}\)
c) C=\(2\sqrt{8\sqrt{3}-2\sqrt{5\sqrt{3}}-3\sqrt{20\sqrt{3}}}\)
a: \(A=\dfrac{2\sqrt{2}\left(\sqrt{3}+1\right)}{3\cdot\sqrt{2+\sqrt{3}}}=\dfrac{4\left(\sqrt{3}+1\right)}{3\cdot\sqrt{4+2\sqrt{3}}}\)
\(=\dfrac{4\left(\sqrt{3}+1\right)}{3\left(\sqrt{3}+1\right)}=\dfrac{4}{3}\)
b: \(B=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}-\left|3\sqrt{5}-3\right|\)
\(=\sqrt{5}-\sqrt{3}-3\sqrt{5}+3=3-\sqrt{3}-2\sqrt{5}\)
a/ \(\dfrac{\sqrt{3-\sqrt{5}}\left(3+\sqrt{5}\right)}{\sqrt{10}+\sqrt{2}}\)
b/ \(\sqrt{8\sqrt{3}}-2\sqrt{25\sqrt{12}}+4\sqrt{\sqrt{192}}\)
c/ \(\sqrt{2-\sqrt{3}}\left(\sqrt{5}+\sqrt{2}\right)\)
d/ \(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\)
e/ \(\dfrac{\left(\sqrt{5}+2\right)^2-8\sqrt{5}}{2\sqrt{5}-4}\)
Làm ơn, giúp mik với. Mik đang cần gấp lắm!
a: \(=\dfrac{\sqrt{6-2\sqrt{5}}\left(3+\sqrt{5}\right)}{2\left(\sqrt{5}+1\right)}=\dfrac{\left(\sqrt{5}-1\right)\left(3+\sqrt{5}\right)}{2\left(\sqrt{5}+1\right)}\)
\(=\dfrac{3\sqrt{5}+5-3-\sqrt{5}}{2\left(\sqrt{5}+1\right)}=\dfrac{2\sqrt{5}+2}{2\left(\sqrt{5}+1\right)}=1\)
b: \(=\sqrt{\sqrt{3}}\left(2\sqrt{2}-2\cdot5\sqrt{2}+4\cdot8\sqrt{2}\right)\)
\(=\sqrt{\sqrt{3}}\cdot24\sqrt{2}\)
d: \(=\dfrac{\sqrt{6-2\sqrt{5}}+\sqrt{6+2\sqrt{5}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{5}-1+\sqrt{5}+1}{\sqrt{2}}=\dfrac{2\sqrt{5}}{\sqrt{2}}=\sqrt{10}\)
a) \(\sqrt{2}+\frac{1}{\sqrt{5+2\sqrt{6}}}+\frac{2}{\sqrt{8+2\sqrt{15}}}\)
b) \(\frac{\sqrt{8}+3}{\sqrt{17-3\sqrt{32}}}+\frac{3+2\sqrt{5}}{\sqrt{29-12\sqrt{5}}}-\frac{1}{\sqrt{12+2\sqrt{35}}}\)
c) \(\left(\frac{15}{3-\sqrt{2}}-\frac{2}{1-\sqrt{3}}+\frac{3}{\sqrt{3}-2}\right):\sqrt{28+10\sqrt{3}}\)
Giúp mình bài này nhé, mình đang cần gấp mọi người ơi :<
Thực hiện phép tính:
a)2\(\sqrt{50}\) -3 \(\sqrt{32}\) - \(\sqrt{162}\) + 5\(\sqrt{98}\)
b)\(\sqrt{8+2\sqrt{7}}+\sqrt{11-4\sqrt{7}}\)
c)\(\dfrac{10}{\sqrt{5}}+\dfrac{8}{3+\sqrt{5}}-\dfrac{\sqrt{18}-3\sqrt{5}}{\sqrt{2}-\sqrt{5}}\)
-GIÚP MÌNH VỚI Ạ-
a) \(2\sqrt{50}-3\sqrt{32}-\sqrt{162}+5\sqrt{98}\)
=\(2.5\sqrt{2}-3.4\sqrt{2}-9\sqrt{2}+5.7\sqrt{2}\)
= \(10\sqrt{2}-12\sqrt{2}-9\sqrt{2}+35\sqrt{2}\)
= \(24\sqrt{2}\)
b) \(\sqrt{8+2\sqrt{7}}+\sqrt{11-4\sqrt{7}}\)
= \(\sqrt{7+2\sqrt{7}+1}+\sqrt{7-4\sqrt{7}+4}\)
= \(\sqrt{\left(\sqrt{7}+1\right)^2}+\sqrt{\left(\sqrt{7}-2\right)^2}\)
= \(\sqrt{7}+1+\sqrt{7}-2\)
= \(2\sqrt{7}-1\)
c) \(\dfrac{10}{\sqrt{5}}+\dfrac{8}{3+\sqrt{5}}-\dfrac{\sqrt{18}-3\sqrt{5}}{\sqrt{2}-\sqrt{5}}\)
= \(2\sqrt{5}+6-2\sqrt{5}-3\)
= 3
(1) rút gọn biểu thức:
a) A= \(3\sqrt{2}+5\sqrt{8}-2\sqrt{50}\)
b) B= \(\sqrt{7-4\sqrt{3}}+\sqrt{12+6\sqrt{3}}\)
c) C= \(\dfrac{1}{3+\sqrt{5}}+\dfrac{1}{3-\sqrt{5}}\)
d) D= \(\sqrt[3]{27}-\sqrt[3]{-8}-\sqrt[3]{125}\)
giúp mk vs ạ mai mk hc rồi
a) \(\Leftrightarrow A=3\sqrt{2}+10\sqrt{2}-10\sqrt{2}=3\sqrt{2}\)
b) \(\Leftrightarrow B=\sqrt{7-2\sqrt{12}}+\sqrt{12+2\sqrt{27}}=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(3+\sqrt{3}\right)^2}=2-\sqrt{3}+3+\sqrt{3}=5\)
c) \(\Leftrightarrow C=\dfrac{3-\sqrt{5}+3+\sqrt{5}}{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}=\dfrac{6}{4}=\dfrac{3}{2}\)
d) \(\Leftrightarrow D=3-\left(-2\right)-5=0\)