5x+1 - 5x = 20
Tìm x
a) (5x+1)^2 - (5x+3) (5x - 3) =30
b) (3x-2)^2 - (4-3x)^2 = 20
Chứng minh:
(\(\dfrac{99x+1}{5x^2-5}\) + \(\dfrac{1}{5+5x}\) + \(\dfrac{20}{1-x}\)) : \(\dfrac{4}{x^3y-xy}\) = -5xy
\(\left(\dfrac{99x+1}{5x^2-5}+\dfrac{1}{5+5x}+\dfrac{20}{1-x}\right):\dfrac{4}{x^3y-xy}\)
\(=\left(\dfrac{99x+1}{5\left(x-1\right)\left(x+1\right)}+\dfrac{x-1}{5\left(x-1\right)\left(x+1\right)}-\dfrac{100\left(x+1\right)}{5\left(x-1\right)\left(x+1\right)}\right):\dfrac{4}{xy\left(x^2-1\right)}\)
\(=\dfrac{99x+1+x-1-100x-100}{5\left(x-1\right)\left(x+1\right)}:\dfrac{4}{xy\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{-100xy}{20}=-5xy=VP\)( đpcm )
Quy đồng mẫu thức các phân thức \frac{1}{5x^{2}+20x+20}5x2+20x+201 và \frac{1}{-5x^{2}-5x+10}−5x2−5x+101 ta được
a. 4x(x+1)-5(x+1)=0
b. 5x(x-20)+5x-100=0
c. 2(x-2)+(x-2)^2=0
d. (x-3)^2-5x-x^2=12
a, \(4x\left(x+1\right)-5\left(x+1\right)=0\)
\(\left(x+1\right)\left(4x-5\right)\)=0
\(\left\{{}\begin{matrix}x+1=0\\4x-5=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\left(-1\right)\\4x=5\Rightarrow x=\frac{5}{4}\end{matrix}\right.\)
b, \(5x\left(x-20\right)+5x-100=0\)
\(5x\left(x-20\right)+\left(5x-100\right)=0\)
\(5x\left(x-20\right)+5\left(x-20\right)=0\)
\(\left(x-20\right)\left(5x+5\right)\)= 0
\(\left\{{}\begin{matrix}x-20=0\\5x+5=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=20\\5x=-5\Rightarrow x=-1\end{matrix}\right.\)
c, \(2\left(x-2\right)+\left(x-2\right)^2=0\)
tập xác định của chương trìnhRút gọn thừa số chung
Giải phương trình
Giải phương trình
Biệt thức
Biệt thức
Nghiệm
Lời giải thu được
Vậy x= 0 và x = 2
d, \(\left(x-3\right)^2-5x-x^2=12\)
\(\left(x^2-2.x.3+3^2\right)-5x-x^2=12\)
\(x^2-6x+9-5x-x^2=12\)
\(-11x+9=12\)
\(-11x=3\)
=> \(x=-\frac{3}{11}\)
Tìm x
a) -x/27 -1 = 2/3
b) x - 4 = -14/35 : 20/-21
c) x + 2/3 = -1/12 . -4/5
d) 1/5 - 3/5x = -15/14 :20/-21
e) -3/7x = 3/5 . 28/9
f)1/2x + 3/5x = -2/3
a: =>x/27+1=-2/3
=>x/27=-5/3
=>x=-45
b: \(\Leftrightarrow x-4=\dfrac{2}{5}:\dfrac{20}{21}=\dfrac{2}{5}\cdot\dfrac{21}{20}=\dfrac{42}{100}=\dfrac{21}{50}\)
=>x=221/50
c: \(\Leftrightarrow x+\dfrac{2}{3}=\dfrac{4}{60}=\dfrac{1}{15}\)
=>x=1/15-2/3=1/15-10/15=-9/15=-3/5
d: \(\Leftrightarrow x\cdot\dfrac{3}{5}=\dfrac{1}{5}-\dfrac{15}{14}\cdot\dfrac{21}{20}\)
=>\(x\cdot\dfrac{3}{5}=\dfrac{1}{5}-\dfrac{3}{2}\cdot\dfrac{3}{4}=\dfrac{1}{5}-\dfrac{9}{8}=\dfrac{-37}{40}\)
=>x=-37/24
e: =>-3/7x=84/45
=>x=-196/45
f: =>11/10x=-2/3
=>x=-20/33
\(\left(5x-16\right)\sqrt{x+1}=\sqrt{x^2-x-20}\left(5+\sqrt{5x+9}\right)\)
Tìm x:
1, |5x+13|=2x-7
2,|2x|+|3x-8|-|4x+1|=5x-2
3, |x+1|+|x-3|+|x-10|=20
\(\left|5x+13\right|=2x-7\)
khi \(x>\frac{7}{2}\), biểu thức có dạng:
\(\orbr{\begin{cases}5x+13=2x-7\\5x+13=7-2x\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}3x=-20\\7x=-6\end{cases}\Rightarrow\orbr{\begin{cases}x=-\frac{20}{3}\\x=-\frac{6}{7}\end{cases}}}\)
Bài:Chia 1 biến đã sắp xếp 1)(2x^3+11x^2+18x-3):(2x+3) 2)(2x^3+11x^2+18x-3):(3x+3) 3)(2x^3+9x^2+5x+41):(2x^2-x+9) 4)(13x+41x^2+35x^3-14):(5x-2) 5)(5x^2-3x^3+15-9x):(5-3x) 6)(-4x^2+x^3-20+5x):(x-4)
1: \(\dfrac{2x^3+11x^2+18x-3}{2x+3}\)
\(=\dfrac{2x^3+3x^2+8x^2+12x+6x+9-12}{2x+3}\)
\(=x^2+4x+3-\dfrac{12}{2x+3}\)
x/4x-16 ; 1+x/20-5x
\(\dfrac{x}{4x-16}=\dfrac{x}{4\left(x-4\right)}=\dfrac{-5x}{20\left(4-x\right)}\)
\(\dfrac{1+x}{20-5x}=\dfrac{1+x}{5\left(4-x\right)}=\dfrac{4+4x}{20\left(4-x\right)}\)
\(\dfrac{x}{4x-16}=\dfrac{x}{4\left(x-4\right)}=\dfrac{5x}{20\left(x-4\right)}\\ \dfrac{1+x}{20-5x}=\dfrac{-\left(x+1\right)}{5\left(x-4\right)}=\dfrac{-4\left(x+1\right)}{20\left(x-4\right)}\)
Giải phương trình:
1. \(2\sqrt{9x-27}-\frac{1}{5}\sqrt{25x-75}-\frac{1}{7}\sqrt{49x-147}=20\)
2.\(\frac{3}{2}\sqrt{5x}+\sqrt{5x}-7=\frac{1}{2}\sqrt{5x}\)
1. ĐKXĐ: \(x\ge3\)
\(2\sqrt{9x-27}-\frac{1}{5}\sqrt{25x-75}-\frac{1}{7}\sqrt{49x-147}=20\)
⇔ \(6\sqrt{x-3}-\sqrt{x-3}-\sqrt{x-3}=20\)
⇔ \(4\sqrt{x-3}=20\)
⇔ \(\sqrt{x-3}=5\)
⇔ \(x-3=25\)
⇔ \(x=28\left(TMĐKXĐ\right)\)
Vậy....
2. ĐKXĐ: \(x\ge0\)
\(\frac{3}{2}\sqrt{5x}+\sqrt{5x}-7=\frac{1}{2}\sqrt{5x}\)
⇔ \(\frac{3}{2}\sqrt{5x}+\sqrt{5x}-\frac{1}{2}\sqrt{5x}=7\)
⇔ \(2\sqrt{5x}=7\)
⇔ \(\sqrt{5x}=\frac{7}{2}\)
⇔ \(5x=\frac{49}{4}\)
⇔ \(x=\frac{49}{20}\left(TMĐKXĐ\right)\)
Vậy...