Cho nửa đường tròn đường kính BC lấy điểm A thuộc nửa đường tròn sao cho góc ACB=30 độ a. C/m tam giác ABC vuông b. Tính BC và AC
Cho nửa đường tròn tâm O đường kính AB lấy điểm c thuộc nửa đường tròn sao cho AC = R.căn2. N là một điểm trên cung nhỏ BC AN cắt BC tại I tia AC cắt BN tại D a. ACO là tam giác gì b . tính độ dài BC theo R c. Tính số đo góc BAC và số đo góc CDI
a: Xet ΔOAC có OA=OC và OA^2+OC^2=AC^2
nên ΔOAC vuôg cân tại O
b: \(BC=\sqrt{AB^2-AC^2}=\sqrt{4R^2-2R^2}=R\sqrt{2}\)
c: ΔOAC vuông cân tại O
=>góc BAC=45 độ
Cho nửa đường tròn tâm $O,$ đường kính $AB.$ Lấy điểm $C$ thuộc nửa đường tròn (C khác A, khác B) sao cho $CA<CB.$ Vẽ OM vuông góc với AC, ON vuông góc với BC (M thuộc AC. N thuộc BC)a) Chứng minh tứ giác $OMCN$ là hình chữ nhậtb)Tiếp tuyến tại A của nửa đường tròn O cắt BC tại E, vẽ CH vuông góc với AB (H thuộc AB). Chứng minh $EC\cdot CB=AH\cdot AB.$c) Tiếp tuyến tại B của nửa đường tròn tâm $O$ cắt $ON$ tại $F,$ $OM$ cắt $AE$ tại $I.$ Chứng minh $IF$ là tiếp tuyến của nửa đường tròn tâm $O.$Mọi người check giúp em bài hình với ạ.https://drive.google.com/file/d/1qqhvUUAc_kfoc7AjbeHkveRo2-h8FFpB/view?fbclid=IwAR2EWp0Rtc6eOqFfIyLi7TdGG0vyuNkpGQqe-7GPRtn2Ci8j1CKACXA8nMo
Cho nửa đường tròn (O), đường kính AB=2R. Lấy một điểm C trên nửa đường tròn sao cho góc ABC=30 độ. Gọi P là giao điểm của tiếp tuyến tại A với nửa đường tròn đường thẳng BC.
a) CM: tam giác ABC vuông và PA^2=PB.PC
b) Từ P vẽ tiếp tuyến thứ hai với đường tròn (O) tại M(M là tiếp điểm). CM: PO là đường trung trực của AM
C)PO cắt AM tại N. Tính PA , PO , AM theo R
d) Vẽ MH vuông góc AB tại H. Gọi I là giao điểm của PB và MH. Tính NI theo R
a) \(\widehat{ACB}\) là góc nội tiếp chắn nửa đường tròn nên \(\widehat{ACB}=90^o\). Vậy tam giác ABC vuông tại C.
Xét tam giác vuông PAB có đường cao AC, áo dụng hệ thức lượng trong tam giác ta có:
\(PA^2=PC.PB\)
b) Áp dụng tính chất hai tiếp tuyến cắt nhau, ta có PA = PM
Lại có OA = OM nên PO là trung trực của AM.
c) Ta có \(\widehat{CBA}=30^o\Rightarrow\widehat{CAB}=60^o\) hay tam giác CAO đều. Suy ra AC = R
Xét tam giác vuông PAB có đường cao AC, áo dụng hệ thức lượng trong tam giác ta có:
\(\frac{1}{AC^2}=\frac{1}{AP^2}+\frac{1}{AB^2}\Rightarrow\frac{1}{R^2}=\frac{1}{AP^2}+\frac{1}{4R^2}\)
\(\Rightarrow AP=\frac{2R}{\sqrt{3}}\)
\(\Rightarrow PO=\sqrt{PA^2+AO^2}=\frac{\sqrt{21}R}{3}\)
Xét tam giác vuông PAO, đường cao AN, áo dụng hệ thức lượng ta có:
\(\frac{1}{AN^2}=\frac{1}{PA^2}+\frac{1}{AO^2}\Rightarrow AN=\frac{2\sqrt{7}R}{7}\)
\(\Rightarrow AM=2AN=\frac{4\sqrt{7}}{7}R\)
d) Kéo dài MB cắt AP tại E.
Ta thấy ngay tam giác EMA vuông có PM = PA nên PA = PE
Do MH // AE nên áo dụng định lý Ta let ta có:
\(\frac{HI}{AP}=\frac{IB}{PB}=\frac{MI}{EP}\)
Do AP = EP nên MI = HI
Ta cũng có N là trung điểm AM nên NI là đường trung bình tam giác AMH.
\(\Rightarrow NI=\frac{AH}{2}\)
Xét tam giác vuông AMB, đường cao MH, áp dụng hệ thức lượng ta có:
\(AH.AB=AM^2\Rightarrow AH=\frac{8}{7}R\)
\(\Rightarrow NI=\frac{4}{7}R\)
1.Cho nửa đường tròn (O) đường kính AB , trên nửa đường tròn lấy điểm D bất kì . Dựng hình bình hành ABCD . Kẻ DM vuông với AC , BN vuông với AC (M,N thuộc AC) . Tìm vị trí của D trên nửa đường tròn (O) sao cho : tích BN x AC lớn nhất
2*.Cho nửa đt (O;R) đường kính AB. M là điểm di động trên nửa đường tròn. Tiếp tuyến tại M cắt 2 tiếp tuyến tại A và B của đường tròn lần lượt tại C và D. AM cắt BD tại I. CMR: OI vuông góc BC
3*.Cho tam giác ABC nội tiếp đường tròn (O;R) , ba đường cao AD , BE , CF của tam giác ABC cắt đường tròn (O) lần lượt tại K, N, M . Tính giá trị của biểu thức : AK/AD + BN/BE + CM/CF
cho đường tròn tâm O đường kính AB = 2R. trên nửa đường tròn đường kính AB lấy C và D sao cho góc COD = 90 độ, AC cắt BD tại M.
a, chứng ming tam giác MCO đồng dạng với tam giác MBA. tính tỉ số đồng dạng
b, cho góc CBA = 30 độ. tính cung BC nhỏ
cho nửa đường tròn tâm O, đường kính AB =2R. Lấy một điểm C trên nửa đường tròn sao cho AC = R . Gọi K giao điểm của tiếp tuyến tại A với nửa đường tròn và đường thẳng BC.
a )Chứng minh tam giác AKB , tam giác ACB là tam giác vuông và tính sin góc ABC số đo góc ABC .
b )Từ K vẽ tiếp tuyến thứ hai với nửa đường tròn tâm O tại M . OK cắt AM tại E. Chứng minh OK vuông góc với AM và KC.CB = OE.OK
C )đường vuông góc với AB vẽ từ O cắt BK tại I và cắt đường thẳng BM tại N. Chứng minh IN=IO
d )Vẽ MH vuông góc với AB tại H. Gọi F là giao điểm của BK và MH. Chứng minh EF//AB.
cho nửa đường tròn tâm O đường kính AB lấy C trên nửa đường tròn. lấy D thuộc AB. đường thẳng D vuông góc với AB cắt BC tại F,cắt AC tại E, tiếp tuyến C của đường tròn O cắt EF tại I . chứng minh a) so sánh góc IEC và góc ICE và góc ABC ,b)tam giác IEC là tam giác cân,c)IC=IE=IF
cho nửa đường tròn tâm O, đường kính AB. trên nửa đường tròn lấy 2 điểm C, D sao cho cung AC bé hơn cung AD. Hai đoạn thẳng AD và BC cắt nhau tại E. vẽ EF vuông góc vs AB tại F. a,CMR tứ giác ACEF nội tiếp được trong 1 đường tròn. b, cmr BE.BC=BF.BA c, cho góc ABC=30 độ. Tính diện tích hình quạt tròn OAC theo R
cho nửa đường tròn tâm O, đường kính AB =2R. Lấy một điểm C trên nửa đường tròn sao cho AC = R . Gọi K giao điểm của tiếp tuyến tại A với nửa đường tròn và đường thẳng BC.
a )Chứng minh tam giác AKB tam giác ACB vuông và tính sin góc ABC số đo góc ABC .
b )Từ K vẽ tiếp tuyến thứ hai với nửa đường tròn tâm O tại M . OK cắt AM tại E. Chứng minh OK vuông góc với AM và KC.CB = OE.OK
C )đường vuông góc với AB vẽ từ O cắt BK tại I và cắt đường thẳng BM tại N. Chứng minh IN=IO
d )Vẽ MH vuông góc với AB tại H. Gọi F là giao điểm của BK và MH. Chứng minh EF//AB.