a: Xét(O) có
ΔABC nội tiếp
BC là đường kính
Do đó: ΔABC vuông tại A
b: Xét ΔABC vuông tại A có sin ACB=AC/BC
nên AC/BC=căn 3/2
=>AC=căn 3/2*BC
a: Xét(O) có
ΔABC nội tiếp
BC là đường kính
Do đó: ΔABC vuông tại A
b: Xét ΔABC vuông tại A có sin ACB=AC/BC
nên AC/BC=căn 3/2
=>AC=căn 3/2*BC
Cho nửa đường tròn tâm O đường kính AB lấy điểm c thuộc nửa đường tròn sao cho AC = R.căn2. N là một điểm trên cung nhỏ BC AN cắt BC tại I tia AC cắt BN tại D a. ACO là tam giác gì b . tính độ dài BC theo R c. Tính số đo góc BAC và số đo góc CDI
Cho nửa đường tròn (O), đường kính AB=2R. Lấy một điểm C trên nửa đường tròn sao cho góc ABC=30 độ. Gọi P là giao điểm của tiếp tuyến tại A với nửa đường tròn đường thẳng BC.
a) CM: tam giác ABC vuông và PA^2=PB.PC
b) Từ P vẽ tiếp tuyến thứ hai với đường tròn (O) tại M(M là tiếp điểm). CM: PO là đường trung trực của AM
C)PO cắt AM tại N. Tính PA , PO , AM theo R
d) Vẽ MH vuông góc AB tại H. Gọi I là giao điểm của PB và MH. Tính NI theo R
1.Cho nửa đường tròn (O) đường kính AB , trên nửa đường tròn lấy điểm D bất kì . Dựng hình bình hành ABCD . Kẻ DM vuông với AC , BN vuông với AC (M,N thuộc AC) . Tìm vị trí của D trên nửa đường tròn (O) sao cho : tích BN x AC lớn nhất
2*.Cho nửa đt (O;R) đường kính AB. M là điểm di động trên nửa đường tròn. Tiếp tuyến tại M cắt 2 tiếp tuyến tại A và B của đường tròn lần lượt tại C và D. AM cắt BD tại I. CMR: OI vuông góc BC
3*.Cho tam giác ABC nội tiếp đường tròn (O;R) , ba đường cao AD , BE , CF của tam giác ABC cắt đường tròn (O) lần lượt tại K, N, M . Tính giá trị của biểu thức : AK/AD + BN/BE + CM/CF
cho đường tròn tâm O đường kính AB = 2R. trên nửa đường tròn đường kính AB lấy C và D sao cho góc COD = 90 độ, AC cắt BD tại M.
a, chứng ming tam giác MCO đồng dạng với tam giác MBA. tính tỉ số đồng dạng
b, cho góc CBA = 30 độ. tính cung BC nhỏ
cho nửa đường tròn tâm O, đường kính AB =2R. Lấy một điểm C trên nửa đường tròn sao cho AC = R . Gọi K giao điểm của tiếp tuyến tại A với nửa đường tròn và đường thẳng BC.
a )Chứng minh tam giác AKB , tam giác ACB là tam giác vuông và tính sin góc ABC số đo góc ABC .
b )Từ K vẽ tiếp tuyến thứ hai với nửa đường tròn tâm O tại M . OK cắt AM tại E. Chứng minh OK vuông góc với AM và KC.CB = OE.OK
C )đường vuông góc với AB vẽ từ O cắt BK tại I và cắt đường thẳng BM tại N. Chứng minh IN=IO
d )Vẽ MH vuông góc với AB tại H. Gọi F là giao điểm của BK và MH. Chứng minh EF//AB.
cho nửa đường tròn tâm O, đường kính AB. trên nửa đường tròn lấy 2 điểm C, D sao cho cung AC bé hơn cung AD. Hai đoạn thẳng AD và BC cắt nhau tại E. vẽ EF vuông góc vs AB tại F. a,CMR tứ giác ACEF nội tiếp được trong 1 đường tròn. b, cmr BE.BC=BF.BA c, cho góc ABC=30 độ. Tính diện tích hình quạt tròn OAC theo R
cho nửa đường tròn tâm O, đường kính AB =2R. Lấy một điểm C trên nửa đường tròn sao cho AC = R . Gọi K giao điểm của tiếp tuyến tại A với nửa đường tròn và đường thẳng BC.
a )Chứng minh tam giác AKB tam giác ACB vuông và tính sin góc ABC số đo góc ABC .
b )Từ K vẽ tiếp tuyến thứ hai với nửa đường tròn tâm O tại M . OK cắt AM tại E. Chứng minh OK vuông góc với AM và KC.CB = OE.OK
C )đường vuông góc với AB vẽ từ O cắt BK tại I và cắt đường thẳng BM tại N. Chứng minh IN=IO
d )Vẽ MH vuông góc với AB tại H. Gọi F là giao điểm của BK và MH. Chứng minh EF//AB.
1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC
2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn đường kính MB
3.cho nửa đường tròn tâm O đường kính AB, C thuộc nửa đường tròn.vẽ CH vuông góc với AB(H thuộc AB),M là trung điểm CH,BM cắt tiếp tuyến Ax của O tại P .chứng minh PC là tiếp tuyến của (O)
4.cho đường tròn O đường kính AB, M là một điểm trên OB.đường thẳng qua M vuông góc với AB tại M cắt O tại C và D. AC cắt BD tại P,AD cắt BC tại Q,AB cắt PQ tai I chứng minh IC,ID là tiếp tuyến của (O)
5.cho tam giác ABC nội tiếp đường tròn đường kính BC (AB<AC).T là một điểm thuộc OC.đường thẳng qua T vuông góc với BC cắt AC tại H và cắt tiếp tuyến tại A của O tại P.BH cắt (O) tại D. chứng minh PD là tiếp tuyến của O
6.cho tam giác ABC nội tiếp đường tròn O. phân giác góc BAC cắt BC tại D và cắt (O) tại M chứng minh BM là tiếp tuyến của đường tròn ngoại tiếp tam giác ABD
Cho đường tròn (O; 4cm) có đường kính BC. Gọi A là điểm nằm trên đường tròn sao cho góc vuông ABC=30°. Trên tia AC lấy điểm P sao cho AP=AB. Đường thẳng vuông góc hạ từ P xuống BC cắt BC ở H và cắt BA ở D. Kẻ PB cắt đường tròn (O) tại I.
a)Tính độ dài đường tròn và diện tích hình tròn.
b)Chứng minh tứ giác ACHD nội tiếp.
c)Tam giác ABP là tam giác gì? Tính góc vuông APB, sđ cung ACI.
d)Tính độ dài cung tròn cung ACI và diện diện của hình quạt OAI.
Cho nửa đường tròn tâm O, đường kính BC = 2a, A là điểm trên nửa đường tròn, góc ACB bằng (00 < <900 ). Đường tròn đường kính AB cắt BC ở D (D khác B), tiếp tuyến với đường tròn này ở D cắt AC tại I. Vẽ DEAB và DFAC (E thuộc AB, F thuộc AC).
Tính góc AOB theo
Chứng minh rằng: BEFC là một tứ giác nội tiếp.
Tính diện tích hình quạt tròn (ứng với cung nhỏ AB của đường tròn tâm O đường kính BC) và diện tích tam giác AOB.
Chứng minh rằng: DI là đường trung tuyến của tam giác ADC.
Tính khi DI // EF