chứng minh bất đẳng thức\(\frac{\text{(x2+y2)2 }}{\left(x-y\right)^2}\)>=8
Chứng minh bất đẳng thức \(\frac{x^2}{y^2}+\frac{y^2}{x^2}+4\ge3\left(\frac{x}{y}+\frac{y}{x}\right)\)
\(\left(\frac{x^2}{y^2}+2+\frac{y^2}{x^2}\right)-3\left(\frac{x}{y}+\frac{y}{x}\right)+2\ge0\)
\(\left(\frac{x}{y}+\frac{y}{x}\right)^2-3\left(\frac{x}{y}+\frac{y}{x}\right)+2\ge0\)
\(\left(t-1\right)\left(t-2\right)\ge0\) với \(t=\frac{x}{y}+\frac{y}{x}\ge2\)
=>\(\left(t-1\right)\left(t-2\right)\ge0\) luôn đúng với t \(\ge2\) dpcm
X/y la 4 phan so nghich dao nen deu bang 1
giải hệ phương trình hai ẩn đối xứng loiaj I bằng cách tách hằng đẳng thức A2 - B2\(\hept{\begin{cases}\left(x-y\right)\left(x2-y2\right)\\\left(x+y\right)\left(x2+y2\right)\end{cases}}\)
\(\hept{\begin{cases}\text{(x-y)(x2-y2)=3
}\\(x+y)(x2+y2)=15\end{cases}}
\)
Chứng minh bất đẳng thức :
\(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\ge2xy\)
+) \(\left(x-y\right)^2\ge0\forall x;y\Leftrightarrow x^2-2xy+y^2\Leftrightarrow x^2+y^2\ge2xy\)
\(\Leftrightarrow2x^2+2y^2\ge x^2+y^2+2xy\Leftrightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)
\(\Rightarrow x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)(1)
+) \(x^2-2xy+y^2\ge0\forall x;y\Leftrightarrow x^2-2xy+y^2+4xy\ge4xy\)
\(\Leftrightarrow\left(x+y\right)^2\ge4xy\Rightarrow\frac{\left(x+y\right)^2}{2}\ge2xy\)(2)
Từ (1);(2) \(\Rightarrow x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\ge2xy\)(đpcm)
Chứng minh bất đẳng thức: \(\frac{x^2}{y^2}+\frac{y^2}{x^2}+4\ge3\left(\frac{x}{y}+\frac{y}{x}\right)\)
Tham khảo ở đây nha bạn!
http://olm.vn/hoi-dap/question/520851.html
Chứng minh các bất đẳng thức sau với x, y, z > 0
a) x2 + y2 ≥ (x + y)2/2
b) x3 + y3 ≥ (x + y)3/4
c) x4 + y4 ≥ (x + y)4/8
d) x2 + y2 + z2 ≥ xy + yz + zx
e) x2 + y2 + z2 ≥ (x + y + z)2/3
f) x3 + y3 + z3 ≥ 3xyz
a: Ta có: \(\left(x+y\right)^2\)
\(=x^2+2xy+y^2\)
\(\Leftrightarrow x^2+y^2=\dfrac{\left(x+y\right)^2}{2xy}\ge\dfrac{\left(x+y\right)^2}{2}\forall x,y>0\)
Chứng minh Bất Đẳng Thức : \(\frac{x^2}{y^2}+\frac{y^2}{x^2}+4\ge3\left(\frac{x}{y}+\frac{y}{x}\right)\)
\(\Leftrightarrow\left(\frac{x}{y}+\frac{y}{x}\right)^2-3\left(\frac{x}{y}+\frac{y}{x}\right)+2\ge0\)
\(\Leftrightarrow\left(\frac{x}{y}+\frac{y}{x}-2\right)\left(\frac{x}{y}+\frac{y}{x}-1\right)\ge0\)(*)
+Nếu x,y cùng dấu: \(\frac{x}{y}>0,\frac{y}{x}>0\) Áp dụng côsi: \(\frac{x}{y}+\frac{y}{x}\ge2\)
\(\Rightarrow\frac{x}{y}+\frac{y}{x}-2\ge0;\frac{x}{y}+\frac{y}{x}-1>0\)
Suy ra (*) đúng => bất đẳng thức đã cho đúng.
+Nếu x,y khác dấu: \(\frac{x}{y}
Làm như bạn Mr Lazy cũng được nhưng hơi dài dòng. Sau đây mình xin trình bày cách này ngắn gọn hơn một chút
Ta đặt \(t=\frac{a}{b}+\frac{b}{a}\Rightarrow\left|t\right|=\left|\frac{a}{b}+\frac{b}{a}\right|=\left|\frac{a}{b}\right|+\left|\frac{b}{a}\right|\ge2\sqrt{\left|\frac{a}{b}\right|.\left|\frac{b}{a}\right|}=2\)
\(\Rightarrow t^2=\left(\frac{a}{b}+\frac{b}{a}\right)^2=\frac{a^2}{b^2}+\frac{b^2}{a^2}+2\)
\(\Rightarrow\frac{a^2}{b^2}+\frac{b^2}{a^2}=t^2-2\)\(\rightarrow\)Ta cần chứng minh BĐT \(t^2-2+4\ge3t\) Hay \(t^2+2\ge3t\left(1\right)\)
Thật vậy.
\(\left(1\right)\Leftrightarrow t^2-3t+2\ge0\)
\(\Leftrightarrow\left(t-1\right)\left(t-2\right)\ge0\)
Xét TH1 \(t\ge2\)
\(\Rightarrow\begin{cases}t-2\ge0\\t-1>0\end{cases}\Rightarrow\left(t-1\right)\left(t-2\right)\ge0\Rightarrow\)BĐT luôn đúng
Xét TH2 \(t\le-2\)
\(\Rightarrow\hept{\begin{cases}t-1< 0\\t-2< 0\end{cases}\Rightarrow\left(t-1\right)\left(t-2\right)>0\Rightarrow}\)BĐT luôn đúng
Chứng minh đẳng thức, bất đẳng thức: \(x^4+y^4+\left(x+y\right)^4=2.\left(x^2+xy+y^2\right)^2\)
Lời giải:
Ta có:
$x^4+y^4+(x+y)^4=(x^4+y^4+2x^2y^2)-2x^2y^2+[(x+y)^2]^2$
$=(x^2+y^2)^2-2x^2y^2+(x^2+2xy+y^2)^2$
$=(x^2+y^2)^2-2x^2y^2+(x^2+y^2)^2+(2xy)^2+4xy(x^2+y^2)$
$=2(x^2+y^2)^2+2x^2y^2+4xy(x^2+y^2)$
$=2[(x^2+y^2)^2+2xy(x^2+y^2)+(xy)^2]$
$=2(x^2+y^2+xy)^2$
Ta có đpcm.
Cho x,y,z là 3 số thực dương thỏa mãn xyz=1.Chứng minh bất đẳng thức
\(\frac{1}{\left(2x+y+z\right)^2}+\frac{1}{\left(x+2y+z\right)^2}+\frac{1}{\left(x+y+2z\right)^2}\le\frac{3}{16}\)
chứng minh bất đẳng thức
\(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)
Đề phải cho x,y,z ; a,b,c >0 chứ bạn ơi
Xét A = (a^2/x + b^2/y + c^2/z) . (x+y+z) = [(a/\(\sqrt{x}\))^2+(b/\(\sqrt{y}\))^2+(c/\(\sqrt{z}\))^2 . (\(\sqrt{x}\)2 + \(\sqrt{y}\)2 + \(\sqrt{z}\)2)
Áp dụng bđt bunhiacopxki ta có :
A >= (a/\(\sqrt{x}\).\(\sqrt{x}\)+b/\(\sqrt{y}\).\(\sqrt{y}\)+c/\(\sqrt{z}\).\(\sqrt{z}\))^2 = (a+b+c)^2
=> a^2/x + b^2/y + c^2/z >= (a+b+c)^2/x+y+z
=> ĐPCM
k mk nha
Nhầm chỗ \(\sqrt{z}\)2 nha . đó là \(\sqrt{z}\)2
k mk nha