Tìm các giá trị x,y nguyen thoả mãn :\(x^2+xy+y^2=3\left(x+y-1\right)\)
a,cho các số x,y,z khác 0 thoả mãn
\(x-2y+\frac{z}{y}=z-2x+\frac{y}{x}=x-2z-\frac{y}{z}\).Tính giá trị biểu thức A=\(\left(1+\frac{y}{x}\right)\times\left(1+\frac{y}{x}\right)=\left(1+\frac{x}{z}\right)+2020\)
b, tìm các số tự nhiên x,y thoả mãn xy+4x=35+5y
c, tìm các số tự nhiên x,y thoả mãn 2^/x/+y^2+y=2x+1
Cho các số thực dương x,y,z thoả mãn x-y+z=-1. Tìm giá trị lớn nhất của biểu thức: P=\(\frac{x^3z^3}{\left(x+yz\right)\left(z+xy\right)\left(y+xz\right)^2}\)
Giúp mình với!
Tìm số nguyen x,y thoả mãn:
\(\left(x+y\right)^2\left(y-2\right)+xy^2+26=0\)
Cho các số thực dương x,y,z thoả mãn x-y+z=-1. Tìm giá trị lớn nhất của biểu thức: P=\(\frac{x^3z^3}{\left(x+yz\right)\left(z+xy\right)\left(y+xz\right)^2}\)
Giúp mình với! Cảm ơn
Cho các số thực dương x,y,z thoả mãn x-y+z=-1. Tìm giá trị lớn nhất của biểu thức: P=\(\frac{x^3z^3}{\left(x+yz\right)\left(z+xy\right)\left(y+xz\right)^2}\)
Giúp mình với! Cảm ơn
Cho các số thực dương x,y,z thoả mãn x-y+z=-1. Tìm giá trị lớn nhất của biểu thức: P=\(\frac{x^3z^3}{\left(x+yz\right)\left(z+xy\right)\left(y+xz\right)^2}\)
Giúp mình với! Cảm ơn
Cho các số dương x, y thoả mãn x + y = 1. Tìm giá trị nhỏ nhất của\(P=\left(2x+\dfrac{1}{x}\right)^2+\left(2y+\dfrac{1}{y}\right)^2\)
Theo bđt Cauchy schwarz dạng Engel
\(P\ge\frac{\left(2x+2y+\frac{1}{x}+\frac{1}{y}\right)^2}{1+1}=\frac{\left[2\left(x+y\right)+\frac{1}{x}+\frac{1}{y}\right]^2}{2}\)
Ta có \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)(bđt phụ)
\(\Rightarrow P\ge\frac{\left[2.1+4\right]^2}{2}=\frac{36}{2}=18\)
Dấu ''='' xảy ra khi \(x=y=\frac{1}{2}\)
\(P=\left(2x+\dfrac{1}{x}\right)^2+\left(2y+\dfrac{1}{y}\right)^2\ge\dfrac{1}{2}\left(2x+\dfrac{1}{x}+2y+\dfrac{1}{y}\right)^2\ge\dfrac{1}{2}\left(2x+2y+\dfrac{4}{x+y}\right)^2=18\)
\(P_{min}=18\) khi \(x=y=\dfrac{1}{2}\)
Cho mình hỏi bạn Nguyễn Huy Tú, hãy giải thích cho mình hiểu về bất đẳng thức Cauchy schawarz (Định lý, chứng minh,..). Đây là lần đầu tiên mình được nghe tên về bất đẳng thức này nên mong bạn giải thích dễ hiểu. Chúc bạn ngày một thành công hơn trong con đường học vấn của mình !
G.sử x, y là các số thực thoả mãn: \(\left(x+\sqrt{3+x^2}\right)\left(y+\sqrt{3+y^2}\right)=9\)
Tìm min: \(P=x^2+xy+y^2\)
a, cho a, b là 2 số thoả mãn |a-2b+3|\(^{2023}\) + (b-1)\(^{2024}\) = 0. Tính giá trị biểu thức
P = a\(^{2023}\) x b\(^{2024}\) + 2024
b, 3 số hữu tỉ x,y,z thoả mãn xy+yz+zx = 2023. Chứng tỏ rằng:
A = \(\dfrac{\left(x^2+2023\right)x\left(y^2+2023\right)x\left(z^2+2023\right)}{16}\) viết được dưới dạng bình phương của 1 số hữu tỉ
a: \(\left|a-2b+3\right|^{2023}>=0\forall a,b\)
\(\left(b-1\right)^{2024}>=0\forall b\)
Do đó: \(\left|a-2b+3\right|^{2023}+\left(b-1\right)^{2024}>=0\forall a,b\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}a-2b+3=0\\b-1=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}b=1\\a=2b-3=2\cdot1-3=-1\end{matrix}\right.\)
Thay a=-1 và b=1 vào P, ta được:
\(P=\left(-1\right)^{2023}\cdot1^{2024}+2024=2024-1=2023\)