Thu gọn : C = a ( b + c ) - b ( a - c ) - c ( a + b ) + 3 ac
Bài 3: Thu gọn các biểu thức:
a) A=(2a+b+3c)-(a-b+c)
b) B= (a+b-c)-(a-b+c)-(a-b-c)
c) C=(a-2b-c)-(-2a+b-c)-(-a-b-2c)
\(a,A=\left(2a+b+3c\right)-\left(a-b+c\right)\)
\(=2a+b+3c-a+b-c\)
\(=a+2b-2c\)
\(b,B=\left(a+b-c\right)-\left(-2a+b-c\right)-\left(-a-b-2c\right)\)
\(=a+b-c+2a-b+c+a+b+2c\)
\(=4a+b+2c\)
\(c,C=\left(a-2b-c\right)-\left(-2a+b-c\right)-\left(-a-b-2c\right)\)
\(=a-2b-c+2a-b+c+a+b+2c\)
\(=4a-2b+2c\)
Bỏ dấu ngoặc rồi thu gọn biểu thức saiu :
a , ( a+b)-(a-b)+(a+c)-(a+3)
b, ( a+b-c)+(a+b+c)-(b+c-a)
Bỏ dấu ngoặc rồi thu gọn các biểu thức
1 (a – b + c) – (a + c)
2 (a + b) – (b – a) + c
3 - (a + b – c) + (a – b – c)
4 a(b + c) – a(b + d) - a(c – d)
5 a(b – c) + a(d + c) = a(b + d)
Giup mik với
1: =a-b+c-a-c=-b
2: =a+b-b+a+c=2a+c
3: =-a-b+c+a-b-c=-2b
4: =ab+ac-ab-ad-ac+ad=0
Thu gọn
(a+b+c)3-(b+c-d)3-(a+c-b)3-(a+b-c)3
ban len google ik.
hk tot!
trong day bao ko nen hoi nhieu.
Thu gọn biểu thức
(a+b)(a-b)
7x-19x+6x
-ab-ba
ac +ad -bc-bd
-b(-b+a-c)
(a+b)-(a-b)+(a+c)
(a+b-c )+(a-b+c)-(b+c-a)-(a-b-c)
x+45-[90+(-20)+5-(-45)]
x+(294+13)+(94+13)
nhanh lên
mk sắp đi học rùi
ai nhanh nhất mk kick
Phá ngoặc rồi thu gọn
1. a( b - c - d ) - a(b + c - d )
2. ( a + b) ( c + d ) - ( a + d) ( b + c)
3. ( a +b ) ( c - d ) - ( a- b) ( c + d )
1) \(a\left(b-c-d\right)-a\left(b+c-d\right)\)
\(=ab-ac-ad-ab-ac+ad\)
\(=-2ac\)
2) \(\left(a+b\right)\left(c+d\right)-\left(a+d\right)\left(b+c\right)\)
\(=ac+ad+bc+bd-ab-ac-bd-cd\)
\(=ad+bc-ab-cd\)
3) \(\left(a+b\right)\left(c-d\right)-\left(a-b\right)\left(c+d\right)\)
\(=ac-ad+bc-bd-ac-ad+bc+bd\)
\(=-2ad+2bc\)
\(=-2\left(ad-bc\right)\)
c/m
(a+b+c)3-a3-b3-c3=3(a+b)(b+c)(c+a)
áp dụng thu gọn
A=(a+b+c)3-(a+b-c)3-(a-b+c)3-(-a+b+c)3
\(\left(a+b+c\right)^3-a^3-b^3-c^3\)
\(=\left[\left(a+b\right)+c\right]^3-a^3-b^3-c^3\)
\(=\left[\left(a+b\right)^3+c^3+3c.\left(a+b\right).\left(a+b+c\right)\right]-a^3-b^3-c^3\)
\(=\left[a^3+b^3+3ab.\left(a+b\right)+c^3+3c.\left(a+b\right)\right]-a^3-b^3-c^3\)
\(=3ab.\left(a+b\right)+3c.\left(a+b\right)\left(a+b+c\right)=3.\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Áp dụng :
Đặt \(\left\{{}\begin{matrix}a+b-c=x\\a-b+c=y\\-a+b+c=z\end{matrix}\right.\) \(\Rightarrow x+y=z=a+b+c\)
Khi đó biểu thức trở thành :
\(\left(x+y+z\right)^3-x^3-y^3-z^3=3.\left(x+y\right)\left(y+z\right)\left(z+x\right)\)
\(=3.2a.2b.2c=24abc\)
thu gọn biểu thức sau 2x(2a+b-c)-3(a+2b-c)+(b-a-c)
Thu gọn : D = a ( b - c ) - a ( b - d ) + a ( c + d ) - 3 bc
E = ( a+b ) ( c + d ) - ( a + d ) ( b+ c ) - ( a - c ) ( d - b )