Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thanh Thảo
Xem chi tiết
Edogawa Conan
16 tháng 7 2019 lúc 16:39

a) Ta có: C = x2 + x - 2 = (x2 + x + 1/4) - 9/4 = (x + 1/2)2 - 9/4

Ta luôn có: (x + 1/2)2 \(\ge\)\(\forall\)x

=> (x + 1/2)2 - 9/4 \(\ge\)-9/4 \(\forall\)x

Dấu "=" xảy ra khi: x + 1/2 = 0 <=> x = -1/2

Vậy Min của C = -9/4 tại x = -1/2

b) Ta có: D = x2 + y2 + x - 6y + 5 = (x2 + x + 1/4) + (y2 - 6y + 9) - 17/4 = (x + 1/2)2 + (y - 3)2 - 17/4

Ta luôn có: (x + 1/2)2 \(\ge\)\(\forall\)x

          (y - 3)2 \(\ge\)\(\forall\)y

=> (x + 1/2)2 + (y - 3)2 - 17/4 \(\ge\)-17/4 \(\forall\)x; y

Dấu'=" xảy ra khi: \(\hept{\begin{cases}x+\frac{1}{2}=0\\y-3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-\frac{1}{2}\\y=3\end{cases}}\)

Vậy Min của D =  -17/4 tại \(\hept{\begin{cases}x=-\frac{1}{2}\\y=3\end{cases}}\)

Edogawa Conan
16 tháng 7 2019 lúc 16:43

c) Ta có: E = x2 + 10y2 - 6xy - 10y + 26 = (x2 - 6xy + 9y2) + (y2 - 10y + 25) + 1 = (x - 3y)2 + (y - 5)2 + 1

Ta luôn có: (x - 3y)2 \(\ge\)\(\forall\)x;y

     (y - 5)2 \(\ge\)\(\forall\)y

=> (x - 3y)2 + (y - 5)2 + 1 \(\ge\) 1 \(\forall\)x; y

Dấu "=" xảy ra khi: \(\hept{\begin{cases}x-3y=0\\y-5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3y\\y=5\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3.5=15\\y=5\end{cases}}\)

Vậy Min của E = 1 tại x = 15 và y = 5

Kim Liên Trần Thị
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 10 2023 lúc 20:43

loading...  

Linh Nguyễn Hương
Xem chi tiết
Phong Thần
17 tháng 9 2018 lúc 20:33

a) \(A=9x^2-6x+3\)

\(A=\left(3x\right)^2-2.3x+1+2\)

\(A=\left(3x-1\right)^2+2\)

\(\left(3x-1\right)^2\ge0\) với mọi x

\(\Rightarrow\left(3x-1\right)^2+2\ge2\) với mọi x

\(\Rightarrow Amin=2\Leftrightarrow3x-1=0\)

\(\Rightarrow3x=1\)

\(\Rightarrow x=\dfrac{1}{3}\)

Vậy giá trị nhỏ nhất của biểu thức là 2 khi x = 1/3

b) \(B=x^2-3x\)

\(B=x^2-2.x.\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{9}{4}\)

\(B=\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{4}\)

\(\left(x-\dfrac{3}{2}\right)^2\ge0\) với mọi x

\(\Rightarrow\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{4}\ge-\dfrac{9}{4}\) với mọi x

\(\Rightarrow Bmin=-\dfrac{9}{4}\Leftrightarrow x-\dfrac{3}{2}=0\)

\(\Rightarrow x=\dfrac{3}{2}\)

Vậy giá trị nhỏ nhất của biểu thức là -9/4 khi x = 3/2

c) \(C=x^2+8x+10\)

\(C=x^2+2.x.4+16-6\)

\(C=\left(x+4\right)^2-6\)

\(\left(x+4\right)^2\ge0\) với mọi x

\(\Rightarrow\left(x+4\right)^2-6\ge-6\) với mọi x

\(\Rightarrow Cmin=-6\Leftrightarrow x+4=0\)

\(\Rightarrow x=-4\)

Vậy giá trị nhỏ nhất của biểu thức là -6 khi x = -4

d) \(D=x^2-2x+15+y^2+3y\)

\(D=x^2-2x+1+y^2+2.y.\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{9}{4}+14\)

\(D=\left(x-1\right)^2+\left(y+\dfrac{3}{2}\right)^2+\dfrac{47}{4}\)

\(\left(x-1\right)^2\ge0\) với mọi x

\(\left(y+\dfrac{3}{2}\right)^2\ge0\) với mọi y

\(\Rightarrow\left(x-1\right)^2+\left(y+\dfrac{3}{2}\right)^2\ge0\) với mọi x,y

\(\Rightarrow\left(x-1\right)^2+\left(y+\dfrac{3}{2}\right)^2+\dfrac{47}{4}\ge\dfrac{47}{4}\) với mọi x,y

\(\Rightarrow Dmin=\dfrac{47}{4}\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y+\dfrac{3}{2}=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=1\\y=-\dfrac{3}{2}\end{matrix}\right.\)

Vậy giá trị của biểu thức là 47/4 khi x = 1 và y = -3/2

e) \(E=2x^2+4xy+8x+5y^2-4y-100\)

\(E=\left(x^2+4xy+4y^2\right)+\left(x^2+8x+16\right)+\left(y^2-4y+4\right)-120\)

\(E=\left(x+2y\right)^2+\left(x+4\right)^2+\left(y-2\right)^2-120\)

\(\left(x+2y\right)^2\ge0\) với mọi x,y

\(\left(x+4\right)^2\ge0\) với mọi x

\(\left(y-2\right)^2\ge0\) với mọi y

\(\Rightarrow\left(x+2y\right)^2+\left(x+4\right)^2+\left(y-2\right)^2\ge0\) với mọi x,y

\(\Rightarrow\left(x+2y\right)^2+\left(x+4\right)^2+\left(y-2\right)^2-120\ge-120\) với mọi x,y

\(\Rightarrow Emin=-120\Leftrightarrow\left\{{}\begin{matrix}x+2y=0\\x+4=0\\y-2=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=-4\\y=2\end{matrix}\right.\)

Vậy giá trị nhỏ nhất của biểu thức là -120 khi x = -4 ; y = 2

f) \(F=x^2-6xy+26+10y^2-10y\)

\(F=x^2-6xy+9y^2+y^2-10y+25+1\)

\(F=\left(x^2-6xy+9y^2\right)+\left(y^2-10y+25\right)+1\)

\(F=\left(x-3y\right)^2+\left(y-5\right)^2+1\)

\(\left(x-3y\right)^2\ge0\) với mọi x,y

\(\left(y-5\right)^2\ge0\) với mọi y

\(\Rightarrow\left(x-3y\right)^2+\left(y-5\right)^2\ge0\) với mọi x,y

\(\Rightarrow\left(x-3y\right)^2+\left(y-5\right)^2+1\ge1\) với mọi x,y

\(\Rightarrow Fmin=1\Leftrightarrow\left\{{}\begin{matrix}x-3y=0\\y-5=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=3y\Rightarrow x=15\\y=5\end{matrix}\right.\)

Vậy giá trị của biểu thức là 1 khi x = 15 và y = 5

Đỗ Xuân Tuấn Minh
Xem chi tiết
Ho Nguyen Nam Phuong
Xem chi tiết
Trần Thanh Phương
19 tháng 6 2019 lúc 14:46

\(P=x^2+10y^2-6xy+4x-14y+2023\)

\(P=x^2-6xy+9y^2+4x-12y+y^2-2y+1+2022\)

\(P=\left(x-3y\right)^2+4\left(x-3y\right)+4+\left(y-1\right)^2+2018\)

\(P=\left(x-3y+2\right)^2+\left(y-1\right)^2+2018\ge2018\forall x;y\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=1\)

Nguyễn Việt Lâm
19 tháng 6 2019 lúc 14:47

\(P=x^2+\left(3y\right)^2+4-6xy+4x-12y+y^2-2y+1+2018\)

\(=\left(x-3y+2\right)^2+\left(y-1\right)^2+2018\)

\(\Rightarrow...\)

Như Trần
19 tháng 6 2019 lúc 14:53

\(P=x^2+10y^2-6xy+4x-14y+2023\\ P=\left(x^2+9y^2+4-6xy+4x-12y\right)+\left(y^2-2y+1\right)+2018\\ P=\left(x-3y+2\right)^2+\left(y-1\right)^2+2018\)

Ta có: \(\left(x-3y+2\right)^2+\left(y-1\right)^2\ge0\)

\(\Rightarrow P=\left(x-3y+2\right)^2+\left(y-1\right)^2+2018\ge2018\)

Dấu "=" xảy ra khi:

\(\left\{{}\begin{matrix}\left(x-3y+2\right)^2=0\\\left(y-1\right)^2=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x-3y+2=0\\y-1=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x-3y=-2\\y=1\end{matrix}\right.\\ \Rightarrow x-3=-2\\ \Rightarrow x=1\)

Vậy MinP = 2018 <=> x = 1, y = 1

Trang Anh Nguyễn
Xem chi tiết
phát Nguyễn Như
Xem chi tiết
Trọng Huỳnh Hữu
Xem chi tiết
_Guiltykamikk_
5 tháng 4 2018 lúc 22:36

\(A=-4x^2-5y^2+8xy+10y+12\)

\(-A=4x^2+5y^2-8xy-10y-12\)

\(-A=\left(4x^2-8xy+y^2\right)+\left(4y^2-10y+\frac{25}{4}\right)-\frac{73}{4}\)

\(-A=\left(2x-y\right)^2+\left(2y-\frac{5}{2}\right)^2-\frac{73}{4}\)

Mà : \(\left(2x-y\right)^2\ge0\forall x;y\)

         \(\left(2y-\frac{5}{2}\right)^2\ge0\forall y\)

\(\Rightarrow-A\ge-\frac{73}{4}\)

\(\Leftrightarrow A\le\frac{73}{4}\)

Dấu "=" xảy ra khi :

\(\hept{\begin{cases}2x-y=0\\2y-\frac{5}{2}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{8}\\y=\frac{5}{4}\end{cases}}\)

Vậy \(A_{Max}=\frac{73}{4}\Leftrightarrow\left(x;y\right)=\left(\frac{5}{8};\frac{5}{4}\right)\)

Phương Anh Trần
Xem chi tiết
Dân Chơi Đất Bắc=))))
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 9 2020 lúc 17:06

\(A=\left(x^2+9y^2+1-6xy+2x-6y\right)+\left(y^2+4y+4\right)+2\)

\(A=\left(x-3y+1\right)^2+\left(y+2\right)^2+2\ge2\)

\(A_{min}=2\) khi \(\left\{{}\begin{matrix}x=-7\\y=-2\end{matrix}\right.\)

\(B=\left(x^2+y^2+1-2xy+2x-2y\right)+\left(y^2+6y+9\right)+10\)

\(B=\left(x-y+1\right)^2+\left(y+3\right)^2+10\ge10\)

\(B_{min}=10\) khi \(\left\{{}\begin{matrix}x=-4\\y=-3\end{matrix}\right.\)

Khách vãng lai đã xóa
Dân Chơi Đất Bắc=))))
22 tháng 9 2020 lúc 20:05

giúp mình với mình đang cần gấp

Khách vãng lai đã xóa