Cho tam giác ABC có AB=AC, M là trung điểm của BC, trên tia đối của tia MA lấy điểm D sao cho AM=MD.
a) Chứng minh AB=DC.
b) chứng minh AB//DC.
c) chứng minh CB là tia phân giác của góc ACD.
Cả nhà ơi, giúp Ánh giải bài này vs
Cho tam giác ABC có AB=AC, M là trung điểm của BC.Trên tia đối của tia Ma lấy điểm D sao cho AM=MD.
a. Chứng minh tam giác AMB= tam giác DCM.
b.Chứng minh AB// DC.
c. Chứng minh AM vuông góc với BC
Bài 1. Cho
ABC
có AB = AC. M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D
sao cho AM = MD.
a) Chứng minh
tam giác ABM= tam giác DCM
b) Chứng minh AB = DC.
c) Chứng minh AM = BC.
b: Xét tứ giác ABDC có
M là trung điểm của AD
M là trung điểm của BC
Do đó: ABDC là hình bình hành
Suy ra: AB=DC
Cho tam giác ABC có AB=AC, M là trung điểm của BC . Trên tia đối của tia MA lấy điểm D sao cho AM=MD a)Chứng mình tâm giác AMB = tam giác DMC b)Chứng minh AB//DC Chứng minh CB là tia phân giác của góc ACD
a: Xét ΔAMB và ΔDMC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔAMB=ΔDMC
b: ΔAMB=ΔDMC
=>\(\widehat{MAB}=\widehat{MDC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//CD
c: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
=>\(\widehat{AMB}=\widehat{AMC}\)
mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(hai góc kề bù)
nên \(\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)
=>AM\(\perp\)BC
XétΔCAD có
CM là đường cao
CM là đường trung tuyến
Do đó: ΔCAD cân tại C
Ta có: ΔCAD cân tại C
mà CM là đường cao
nên CM là phân giác của góc ACD
=>CB là phân giác của góc ACD
Cho tam giác ABC có AB = AC. M là trung điểm của BC, trên tia đối của tia MA lấy điểm D sao cho AM = MD.
a) Chứng minh AB = DC.
b) Chứng minh AB // DC.
c) Chứng minh CB là tia phân giác của góc ACD.
Ta có hình vẽ:
a/ Xét tam giác AMB và tam giác CMD có:
BM = MC (GT)
góc AMB = góc CMD (đối đỉnh)
AM = MD (GT)
=> tam giác AMB = tam giác CMD (c.g.c)
=> AB = DC (2 cạnh tương ứng)
b/ Ta có: tam giác AMB = tam giác CMD (câu a)
=> góc BAM = góc MDC (2 góc tương ứng)
Mà 2 góc này đang ở vị trí so le trong
=> AB // DC (đpcm)
c/ Xét tam giác ABM và tam giác ACM có:
AB = AC (GT)
BM = MC (GT)
AM: chung
=> tam giác ABM = tam giác ACM (c.c.c)
=> góc AMB = góc AMC (2 góc tương ứng) (*)
Mà góc AMB = góc CMD (đối đỉnh) (**)
Từ (*),(**) = >góc AMC = góc CMD (1)
Ta có: AM = MD (GT) (2)
CM: cạnh chung (3)
Từ (1),(2),(3) => tam giác AMC = tam giác DMC
=> góc ACM = góc DCM (2 góc tương ứng)
=> CM là phân giác góc ACD
hay CB là phân giác góc ACD
a) Xét ΔABM và ΔDCM có:
AM=DM(gt)
\(\widehat{AMB}=\widehat{DMC}\left(đđ\right)\)
BM=CM(gt)
=> ΔABM=ΔDCM(c.g.c)
=> AB=DC
b) VÌ: ΔABM=ΔDCM(cmt)
=> \(\widehat{ABM}=\widehat{C_2}\) .Mà hai góc này ở vị trí sole trong
=> AB//DC
c)Vì: ΔABC có AB=AC(gt)
=> ΔABC cân tại A
=> \(\widehat{ABM}=\widehat{C_1}\)
Mà: \(\widehat{ABM}=\widehat{C_2}\left(cmt\right)\)
=> \(\widehat{C_1}=\widehat{C_2}\)
=> CB là tia phân giác của góc ACD
Cho tam giác ABC có M là trung điểm của cạnh BC. Trên tia đối của tia MA lấy điểm D sao cho MA = MD.
a) Chứng minh ΔAMB = ΔCMD
b) Chứng minh AB // CD.
c) Chứng minh AC = BD và AC // BD.
a: Xét ΔAMB và ΔCMD có
MA=MC
\(\widehat{AMB}=\widehat{CMD}\)
MB=MD
Do đó: ΔAMB=ΔCMD
Cho tam giác ABC có : AB=AC, M là trung điểm của BC, trên tia đối của tia MA lấy điểm D sao cho AM=MD
a/ Chứng minh ABM=DCM
b/ Chứng minh AB // DC
c/ Chứng minh AM vuông góc với BC
d/ Tìm điều kiện của tam giác ABC để ADC =30°.
e/ Trên tia đối của tia AC lấy H sao cho AC=AH.Chứng minh AD=BH
f /Chứng minh tam giác HBC vuông. (Chỉ cần làm câu e và f !)
a: Xét ΔABM và ΔDCM có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔABM=ΔDCM
b: Xét tứ giác ABDC có
M là trung điểm của AD
M là trung điểm của BC
Do đó:ABDC là hình bình hành
Suy ra: AB//DC
c: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
Cho tam giác ABC với AB = AC . lấy I là trung điểm của BC .
a) Chứng minh : ∆AIB = ∆AIC
b) Chứng minh tia AI là tia phân giác của góc BAC
c) Trên tia đối của tia BC lấy điểm M, trên tia đối tia CB lấy điểm N sao cho CN = BM. Chứng minh : AM = AN
a: Xét ΔAIB và ΔAIC có
AI chung
IB=IC
AB=AC
Do đó: ΔAIB=ΔAIC
cho tam giác nhọn ABC (AB<AC). Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MA = MD.
a) Chứng minh rằng tam giác ABM bằng tam giác DCM. Từ đó suy ra AB= CD.
b) Kẻ AH vuông góc với BC. Trên tia đối của tia HA lấy điểm E sao cho HA=HE. Chứng minh rằng BE=CD.
c) Gọi I là trung điểm của ED. Tính số đo MID.
a: Xét ΔABM và ΔDCM có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔABM=ΔDCM
Bài 1: Cho tam giác ABC có M là trung điểm cạnh BC. Trên tia đối của tia MA lấy D sao cho MA=MD. Tìm các tam giác bằng nhau có trên hình vẽ và chứng minh điều đó.
Bài 2: Cho hai điểm A và B nằm trên đường thẳng xy, trên cùng một nửa mặt phẳng bờ là đường thẳng xy ta kẻ hai đoạn AH và BK cùng vuông góc với xy sao cho AH=BK. a) Chỉ ra hai tam giác bằng nhau và chứng minh. b) Chỉ ra các cạnh các góc tương ứng. c) Gọi O là trung điểm HK. So sánh hai tam giác AOH và BOK.
Bài 3: Cho ABC, trên tia đối của tia AB, xác định điểm D sao cho AD = AB. Trên tia đối của tia AC xác định điểm E sao cho AE = AC. Chứng minh rằng: a) BC // ED b) DBC = BDE
Bài 4: Cho hai đoạn AB và CD cắt nhau tại trung điểm O của mỗi đường. Chứng minh BC // AD.
Bài 5: Cho tam giác ABC có AB = AC. Tia phân giác của góc A cắt BC ở D. Chứng minh: a) DB = DC b) AD BC
Bài 6: Cho tam giác ABC có AB = AC, M là trung điểm của BC, trên tia AM lấy D sao cho AM = MD. Chứng minh: a) ABM = DCM. b) AB // DC. c) AM BC
Bài 7: Qua trung điểm M của đoạn AB vẽ đường thẳng d vuông góc với AB. Trên đường thẳng d lấy điểm K. Chứng minh KM là tia phân giác của góc AKB.
Bài 8: Cho góc xOy có Ot là tia phân giác. Trên hai tia Ox, Oy lần lượt lấy các điểm M, N sao cho OM = ON. Trên tia Ot lấy P bất kì. Chứng minh a) PM = PN. b) Khoảng cách từ P đến hai cạnh của góc xOy bằng nhau.
Bài 9: Cho tam giác ABC có góc A bằng 90 0 . Trên tia đối của tia CA lấy điểm D sao cho CD = CA. Trên tia đối của tia CB lấy điểm E sao cho CE = CB. a) Chứng minh: AB = DE b) Tính số đo góc EDC?
Bài 10: Cho tam giác ABC, M là trung điểm của BC. Trên nửa mặt phẳng bờ là đường thẳng BC không chứa điểm A vẽ tia Cx song song với AB. Trên tia Cx lấy điểm D sao cho CD = AB. Chứng minh: a) MA = MD b) BA điểm A, M, D thẳng hàng.
11: Cho tam giác ABC, M, N là trung điểm của AB và AC. Trên tia đối của tia NM xác định điểm P sao cho NP = MN. Chứng minh: a) CP//AB b) MB = CP c) BC = 2MN