Chứng minh phân số sau tối giản với mọi n là số tự nhiên:
(n2+2):5
a, Chứng minh rằng với mọi số tự nhiên n thì \(\dfrac{n+1}{2n+3}\) là phân số tối giản
b, Chứng minh rằng với mọi số tự nhiên a, b thì \(\dfrac{7a+5b}{9a+4b}\) là phân số tối giản
a/
Gọi $d=ƯCLN(n+1, 2n+3)$
$\Rightarrow n+1\vdots d; 2n+3\vdots d$
$\Rightarrow 2n+3-2(n+1)\vdots d$
$\Rightarrow 1\vdots d$
$\Rightarrow d=1$
Vậy $\frac{n+1}{2n+3}$ là phân số tối giản với mọi số tự nhiên $n$
b/
Cho $a=2, b=2$ thì phân số đã cho bằng $\frac{24}{26}$ không là phân số tối giản bạn nhé.
Bạn xem lại đề.
Chứng minh rằng với mọi số tự nhiên n, phân số sau là tối giản : n+3 / n+2
Chứng minh phân thức 7 n - 5 3 n - 2 là tối giản với mọi số tự nhiên n
Hướng dẫn giải:
Gọi d là ƯCLN của 7n - 5 và 3n - 2
⇒ (7n - 5)⋮ d và (3n - 2)⋮ d
⇒ [3(7n - 5) - 7(3n - 2)] = -1⋮ d
⇒ d = 1 hoặc d = -1
Vậy phân thức đã cho tối giản với ∀n ∈ N
Chứng minh rằng với mọi số tự nhiên n khác 0 thì các phân số sau là phân số tối giản n+1/n
Gọi d=ƯCLN(n+1;n)
=>\(\left\{{}\begin{matrix}n+1⋮d\\n⋮d\end{matrix}\right.\)
=>\(n+1-n⋮d\)
=>\(1⋮d\)
=>d=1
=>ƯCLN(n+1;n)=1
=>\(\dfrac{n+1}{n}\) là phân số tối giản
Chứng minh phân số sau tối giản với mọi số tự nhiên n: \(\dfrac{12n+1}{30n+2}\)
Đặt \(d\) là \(\text{Ư}CLN\) \(\left(12n+1;30n+2\right)\)
Theo bài ra: \(12n+1⋮d\Rightarrow5.\left(12n+1\right)⋮d\left(1\right)\)
\(30n+2⋮d\Rightarrow2\left(30n+2\right)⋮d\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) \(\Rightarrow\) \(5.\left(12n+1\right)-2.\left(30n+2\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Mà phân số tối giản thì có \(\text{Ư}CLN\) của tử số và mẫu số là 1
Vậy \(\dfrac{12n+1}{30n+2}\) là phân số tối giản
a) Tìm số tự nhiên n để phân số M= n-1/n-2( n thuộc Z, n khác 2) là phân số tối giản
b) Chứng minh rằng với mọi số tự nhiên n, A = 2n+1/2n+3 là phân số tối giản
Chứng minh rằng phân số sau là phân số tối giản với mọi số tự nhiên n: \(\frac{n}{30+2}\)
chứng minh phân số 21n+2/12n+1 là phân số tối giản với mọi số tự nhiên n
Bài 1: Cho phân số n - 1 / n - 2 ( n thuộc Z ; n khác 2 ). Tìm n để A là phân số tối giản
Bài 2: Với mọi số tự nhiên n chứng minh các phân số sau là phân số tối giản: A = 2n + 1 / 2n + 3
Câu 1:
gọi n-1/n-2 là M.
Để M là phân số tối giản thì ƯCLN (n - 1; n - 2) = 1 hay -1
Theo đề bài: M = n−1n−2n−1n−2 (n ∈∈Zℤ; n ≠2≠2)
Gọi d = ƯCLN (n - 1; n - 2)
=> n - 1 - (n - 2) ⋮⋮d *n - 1 - (n - 2) = n - 1 - n + 2 = n - n + 2 - 1 = 0 + 2 - 1 = 2 - 1 = 1
=> 1 ⋮⋮d
=> d ∈∈Ư (1)
Ư (1) = {1}
=> d = 1
Mà ngay từ lúc đầu d phải bằng 1 rồi.
Vậy nên với mọi n ∈∈Z và n ≠2≠2thì M là phân số tối giản.