y x 9 + y x 8 = 170
Tìm \(x,y,z:\)
\(1)\) \(\frac{x}{y}=\frac{8}{11};\frac{y}{z}=\frac{11}{7}\) và \(x+y-10z=102\)
\(2)\) \(\frac{x}{y}=\frac{8}{11};\frac{y}{z}=\frac{11}{7}\)và \(x+y-10z=-102\)
\(3)\)\(\frac{x}{y}=\frac{9}{25};\frac{y}{z}=\frac{10}{13}\)và \(x+3y+2z=6\)
\(4)\)\(\frac{x}{y}=\frac{9}{25};\frac{y}{z}=\frac{10}{13}\)và \(x-3y+2z=6\)
Giá trị lớn nhất |x+y| biết:
\(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
Giá trị lớn nhất |x+y| biết:
\(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
E+x^(4)*y^(4)+x^(5)*y^(5)+x^(6)*y^(6)+x^(7)*y^(7)+x^(8)*y^(8)+x^(9)*y^(9)+x^(10)*y^(10) tại x=-1, y=1
E = x^(4)*y^(4)+x^(5)*y^(5)+x^(6)*y^(6)+x^(7)*y^(7)+x^(8)*y^(8)+x^(9)*y^(9)+x^(10)*y^(10) tại x=-1, y=1 nha
Tìm x,y nguyên thỏa mãn:
a)\(\sqrt{x}\)+\(\sqrt{y}\)=\(\sqrt{2017}\)
b)\(\sqrt{x}\)+\(\sqrt{y}\)=\(\sqrt{2017+9}\)
X phần Y = 8phần9 và x+y=-170
Theo đề bài: \(\dfrac{x}{y}=\dfrac{8}{9}\Rightarrow x=\dfrac{8y}{9}\) \(\left(1\right)\)và \(x+y=-170\)\(\left(2\right)\)
Thay \(\left(1\right)\) vào \(\left(2\right)\), ta có: \(\dfrac{8y}{9}+y=-170\)
\(\Leftrightarrow\dfrac{8y}{9}+\dfrac{9y}{9}=-170\)
\(\Leftrightarrow\dfrac{17y}{9}=-170\)
\(\Leftrightarrow17y=-1530\)
\(\Leftrightarrow y=-90\)
Thay \(y=-90\) vào \(\left(2\right)\) suy ra: \(x+\left(-90\right)=-170\)
\(\Rightarrow x=-80\)
Vậy \(x=-80;y=-90\)
tìm x,y là số tự nhiên xy + x + y = 170
\(xy+x+y=170\left(n\inℕ\right)\)
\(\Rightarrow x\left(y+1\right)+y+1-1=170\)
\(\Rightarrow\left(x+1\right)\left(y+1\right)=171\)
\(\Rightarrow\left(x+1\right);\left(y+1\right)\in U\left(171\right)=\left\{1;3;9;19;57;171\right\}\)
\(\Rightarrow\left(x;y\right)\in\left\{\left(0;170\right);\left(2;56\right);\left(8;18\right);\left(18;8\right);\left(56;2\right);\left(170;0\right)\right\}\)
Bài 6:
a) A=y^2-8y-x(8-y) vs x=-8 y=108
b) B= y^2(x^2+y-1)- mx^2-my-m vs x=9 y= -80
c)C=x(y-x0^2-y(x-y)^2-y(x-y)^2+xy^2-x^2y vs x-y=7 xy=9
a: \(A=y^2-8y-x\left(8-y\right)\)
\(=y\left(y-8\right)+x\left(y-8\right)\)
\(=\left(y-8\right)\left(x+y\right)\)
\(=100\cdot100=10000\)
Tìm x;y \(\in\) N*sao cho
a, x/10-1/y=3/10
b, 1/x+y/2=5/8
2 Tìm x;y \(\in\) N* sao cho
a,1/x+1/y=1
b,1/x+1/y+1/z=1
c, 1/x=1/y=1/2
\(1,a,\frac{x}{10}-\frac{1}{y}=\frac{3}{10}=>\frac{x}{10}-\frac{3}{10}=\frac{1}{y}=>\frac{x-3}{10}=\frac{1}{y}=>\left(x-3\right).y=1.10=10\)
bn liệt kê bảng các ước của 10 ra là đc (chỉ lấy ước tự nhiên)
câu sau tương tự
\(2,\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)
Do vai trò của x,y,z như nhau nên giả sử \(1\le x\le y\le z\)
\(=>\frac{1}{x}\ge\frac{1}{y}\ge\frac{1}{z}=>\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le\frac{3}{x}=>1\le\frac{3}{x}=>x\le3=>x\in\left\{1;2;3\right\}\)
\(\left(+\right)x=1=>\frac{1}{y}+\frac{1}{z}=0\) (vô lí)
\(\left(+\right)x=2=>\frac{1}{y}+\frac{1}{z}=\frac{1}{2}=>\frac{y+z}{yx}=\frac{1}{2}=>2\left(y+z\right)=yz=>2y+2z=yz\)
\(=>2y+2z-yz=0=>2y-yz+2z=0=>y\left(2-z\right)+2z-4=-4\)
\(=>y\left(2-z\right)-4+2x=-4=>y\left(2-z\right)-2\left(2-z\right)=-4=>\left(y-2\right)\left(2-z\right)=-4\)
Tìm đc (y;z)=(4;4);(3;6)
\(\left(+\right)x=3=>\frac{1}{y}+\frac{1}{z}=\frac{2}{3}\)
Nếu \(y=3=>z=3\)
Nếu \(y\ge4=>\frac{1}{y}+\frac{1}{z}\le\frac{1}{4}+\frac{1}{4}=\frac{1}{2}< \frac{1}{3}\)
Vậy (x;y;z) là (2;4;4);(2;3;6);(3;3;3) và các hoán vị của chúng
2 câu a và c, rất dễ,bn vận dụng theo phương pháp sử dụng bất đẳng thức như mk vừa làm là đc