gup mk vs
1/x=3/2 . 1/y
1/x + 1/y =1/24
giải hệ phương trình bằng cách đặt ẩn dụ
\(\hept{\begin{cases}\frac{1}{x}=\frac{3}{2}\cdot\frac{1}{y}\\\frac{1}{x}+\frac{1}{y}=\frac{1}{24}\end{cases}}\)
giaỉ hệ phương trình bằng cách đặt ẩn dụ
Đặt: \(\hept{\begin{cases}\frac{1}{x}=a\\\frac{1}{y}=b\end{cases}}\)thì hệ thành
\(\hept{\begin{cases}a=\frac{3b}{2}\\a+b=\frac{1}{24}\end{cases}}\)
Rồi giải tiếp đi b
nhung mk vẫn chưa hiểu lắm bạn giải tiếp cho mk dc ko
Giải hệ phương trình (II) bằng cách đặt ẩn phụ ( u = 1/x; v = 1/y) rồi trả lời bài toán đã cho. I I 1 x = 3 2 . 1 y 1 x + 1 y = 1 24
Đặt 1/x = u; 1/y = v,hệ (II)trở thành:
Vậy số ngày để đội A làm 1 mình xong đoạn đường đó là 40 ngày
Số ngày để đội B làm 1 mình xong đoạn đường đó là 60 ngày
\(\sqrt[4]{x}=\dfrac{1}{\sqrt[4]{2}}-\sqrt{\dfrac{1}{1+\sqrt{2}}-x}\)
Giải phương trình bằng cách đặt ẩn phụ đưa về hệ phương trình
Giải hệ phương trình (II) bằng cách đặt ẩn phụ ( u = 1/x; v = 1/y) rồi trả lời bài toán đã cho.
( I I ) 1 x = 3 2 ⋅ 1 y 1 x + 1 y = 1 24
Đặt 1/x = u; 1/y = v,hệ (II)trở thành:
Vậy số ngày để đội A làm 1 mình xong đoạn đường đó là 40 ngày
Số ngày để đội B làm 1 mình xong đoạn đường đó là 60 ngày
Giải các hệ phương trình sau bằng cách đặt ẩn số phụ: 7 x - y + 2 - 5 x + y - 1 = 4 , 5 3 x - y + 2 + 2 x + y - 1 = 4
Vậy nghiệm của hệ phương trình là (x; y) = (1; 2).
Bằng cách đặt ẩn phụ (theo hướng dẫn), đưa các hệ phương trình sau về dạng hệ hai phương trình bậc nhất hai ẩn rồi giải: 1 x - 2 + 1 y - 1 = 2 2 x - 2 - 3 y - 1 = 1
Giair phương trình bằng cách đặt ẩn phụ:
a) \(x^2+2x\sqrt{x-\dfrac{1}{x}}=3x+1\)
b) \(x^2+\sqrt[3]{x^4-x^2}=2x+1\)
Đề bài: giải hệ phương trình bằng phương pháp đặt ẩn phụ.
a. \(\left\{{}\begin{matrix}\dfrac{2x}{x+1}+\dfrac{y}{y+1}=2\\\dfrac{x}{x+1}+\dfrac{3y}{y+1}=-1\end{matrix}\right.\)
b. \(\left\{{}\begin{matrix}\dfrac{x+y}{xy}+\dfrac{xy}{x+y}=\dfrac{5}{2}\\\dfrac{x-y}{xy}+\dfrac{xy}{x-y}=\dfrac{10}{3}\end{matrix}\right.\)
Giúp mình với mình đang cần gấp
a) \(\left\{{}\begin{matrix}\dfrac{2x}{x+1}+\dfrac{y}{y+1}=2\\\dfrac{x}{x+1}+\dfrac{3y}{y+1}=-1\end{matrix}\right.\)(Đk: \(x\ne-1;y\ne-1\))
Đặt \(\dfrac{x}{x+1}\) là A
\(\dfrac{y}{y+1}\) là B
Ta có HPT mới : \(\left\{{}\begin{matrix}2A+B=2\\A+3B=-1\end{matrix}\right.\)(1)
Giải HPT (1) ta được A= \(\dfrac{7}{5}\) ; B=\(-\dfrac{4}{5}\)
+Với A=\(\dfrac{7}{5}\) ta có:
\(\dfrac{x}{x+1}=\dfrac{7}{5}\)
<=>\(5x=7x+7\)
<=>-2x=7
<=> x=\(-\dfrac{7}{2}\)
+Với B = \(-\dfrac{4}{5}\) ta có:
\(\dfrac{y}{y+1}=-\dfrac{4}{5}\)
<=>5y=-4y-4
<=>9y=-4
<=>y=\(-\dfrac{4}{9}\)
Vậy HPT có nghiệm (x;y) = \(\left\{-\dfrac{7}{2};-\dfrac{4}{9}\right\}\)
Bằng cách đặt ẩn phụ (theo hướng dẫn), đưa các hệ phương trình sau về dạng hệ hai phương trình bậc nhất hai ẩn rồi giải:
a) 1 x − 1 y = 1 3 x + 4 y = 5 Đặt u = 1 x ; v = 1 y b) 1 x − 2 + 1 y − 1 = 2 2 x − 2 − 3 y − 1 = 1 đặt u = 1 x − 2 ; v = 1 y − 1
hệ phương trình (*) trở thành :
+ u = 9 7 ⇒ 1 x = 9 7 ⇒ x = 7 9 + v = 2 7 ⇒ 1 y − 2 7 ⇒ y − 7 2
Vậy hệ phương trình có nghiệm (7/9;7/2)
Kiến thức áp dụng
Giải hệ phương trình bằng phương pháp cộng đại số
1) Nhân hai vế của phương trình với mỗi hệ số thích hợp (nếu cần) sao cho hệ số của một trong hai ẩn bằng nhau hoặc đối nhau.
2) Áp dụng quy tắc cộng đại số để được hệ phương trình mới, trong đó có một phương trình mà hệ số của một trong hai ẩn bằng 0 (tức là phương trình một ẩn).
3) Giải phương trình một ẩn vừa thu được rồi suy ra nghiệm của hệ đã cho và kết luận.