Giá trị của tổng A= 3/(1.2)^2 +5/(2.3)^2+ 7/(3.4)^2+...+ 89/(44.45)^2 là ...
Giá trị của tổng A= 3/(1.2)^2 + 5/(2.3)^2 + 7/(3.4)^2 + 9/(4.5)^2 + ... + 89/(44.45)^2?
Lời giải đây bn nhé :
\(\frac{3}{\left(1.2\right)^2}+\frac{5}{\left(2.3\right)^2}+...+\frac{89}{\left(44.45\right)^2}\)
=\(\frac{3}{1.4}+\frac{5}{4.9}+...+\frac{89}{1936.2025}\)
=\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+...+\frac{1}{1936}-\frac{1}{2025}\)
=\(1-\frac{1}{2025}\)
=\(\frac{2024}{2025}\)
xong r nhé
Tính tổng : a)A=1^2+3^2+5^2+7^2+.....+99^2
b)A=1.2+2.3+3.4+4.5+5.6+6.7+7.8+8.9+9.10
C=A+10.11
Tính giá trị của C
Tìm giá trị của y:
(1.2+2.3+3.4+...+98.99)y/26950= 12.6/7:3/2
1tinh \(\frac{3}{\left(1.2\right)^2}+\frac{5}{\left(2.3\right)^2}+....+\frac{89}{\left(44.45\right)^2}\)
2 tính \(\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right).......\left(1-\frac{1}{12^2}\right)\)
1,tổng quát: (2k+1)/[k(k+1)^2]
=(2k+1)/k^2(k+1)^2=[(k+1)^^2-k^2]/k^2(k+1)^2=1/k^2-1/(k+1)^2
áp dụng vào ,kết quả =2024/2025
Hoàng Phúc bạn có thể giải chi tiết hơn một chút đc ko???
Tính giá trị biểu thức sau
1^2/1.2 x 2^2/2.3 x 3^3/3.4 x 4^2/4.6 x 5^2/5.6
\(\frac{1^2}{1\cdot2}\cdot\frac{2^2}{2\cdot3}\cdot\frac{3^2}{3\cdot4}\cdot\frac{4^2}{4\cdot5}\cdot\frac{5^2}{5\cdot6}=\frac{1^2}{1\cdot6}=\frac{1}{6}\)
lan sau nho ghi de cho dung nha bn
\(\frac{1.1.2.2.3.3.4.4.5.5}{1.2.2.3.3.4.4.5.5.6}\)=\(\frac{\left(1.2.3.4.5\right).\left(1.2.3.4.5\right)}{\left(1.2.3.4.5\right)\left(2.3.4.5.6\right)}=\frac{1}{6}\)
c) Đặt \(A=1\cdot2+2\cdot3+3\cdot4+...+99\cdot100\)
Ta có: \(A=1\cdot2+2\cdot3+3\cdot4+...+99\cdot100\)
\(\Leftrightarrow3A=3\cdot\left(1\cdot2+2\cdot3+3\cdot4+...+99\cdot100\right)\)
\(\Leftrightarrow3A=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+3\cdot4\cdot\left(5-2\right)+...+99\cdot100\cdot\left(101-98\right)\)
\(\Leftrightarrow3\cdot A=1\cdot2\cdot3-1\cdot2\cdot3+2\cdot3\cdot4-2\cdot3\cdot4+...+98\cdot99\cdot100-98\cdot99\cdot100+99\cdot100\cdot101\)
\(\Leftrightarrow3\cdot A=99\cdot100\cdot101\)
\(\Leftrightarrow A=33\cdot100\cdot101=333300\)
b) Ta có: \(1+2-3-4+...+97+98-99-100\)
\(=\left(1+2-3-4\right)+\left(5+6-7-8\right)+...+\left(97+98-99-100\right)\)
\(=\left(-4\right)+\left(-4\right)+...+\left(-4\right)\)
\(=-4\cdot25=-100\)
Tìm x, sao cho giá trị của phân số là 1:
1.2+2.3+3.4+...+99.100/x^2+(x^2+1)+(x^2+2)+...+(x^2+99)
(1/1.2+1/2.3+1/3.4+.......+1/8.9+1/9.10) .100-(5/2:(x +206/100):1/2=89
Ta có: \(\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{8\cdot9}+\dfrac{1}{9\cdot10}\right)\cdot100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)
\(\Leftrightarrow100\left(\dfrac{1}{1}-\dfrac{1}{10}\right)-\left[\dfrac{5}{2}:\left(x+\dfrac{103}{50}\right)\right]\cdot2=89\)
\(\Leftrightarrow\dfrac{5}{2}:\left(x+\dfrac{103}{50}\right)=\dfrac{1}{2}\)
\(\Leftrightarrow x+\dfrac{103}{50}=5\)
hay \(x=\dfrac{147}{50}\)
Tính giá trị các tổng sau theo n:(n>0)
A=1+2+3+....+n
B=1+3+5+...+(2n+1)
C=1.2+2.3+3.4+.....+n(n+1)
D=1.2.3+2.3.4+3.4.5+....+n(n+1)(n+2)