Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Thị Dung
Xem chi tiết
Pham Van Hung
7 tháng 10 2018 lúc 18:17

\(A=1+3+3^2+...+3^{2016}+3^{2017}\)

\(3A=3+3^2+3^3+...+3^{2017}+3^{2018}\)    

\(3A-A=3^{2018}-1\)

\(2A+1=3^{2018}\)

Vậy n = 2018

Phạm Đôn Lễ
7 tháng 10 2018 lúc 18:18

3A=3+3^2+3^3+...+3^2018

-A=1+3+3^2+...+3^2017

2A=3^2018-1

khi đó ta có 2A+1=3^2018-1+1=3^2018=3^n

=>n=2018

Lê Thị Dung
12 tháng 2 2019 lúc 19:47

cảm ơn các bạn

Hà Như Quỳnh
Xem chi tiết
Hà Như Quỳnh
22 tháng 10 2023 lúc 20:37

nhanh tích cho nhee

Tai Nguyen
22 tháng 10 2023 lúc 21:11

tui làm b nha do a không biết làm

A=5+32+33+...+32018

3A=15+33+34+...+32019

3A-A=(15+33+34+...+32019)-(5+32+33+...+32018)

2A=32019+15-(5+32)

2A=32019+15-14

2A=32019+1

2A-1=32019+1-1

2A-1=32019

vậy n = 2019

 

Hà Như Quỳnh
22 tháng 10 2023 lúc 21:29

cmon nhaa, mỗi câu b thoi cx đc :3

Lê Diệu Chinh
Xem chi tiết
nguyenvanhoang
Xem chi tiết
Nhâm Bảo Minh
25 tháng 2 2016 lúc 18:57

OLM duyệt nhanh lên nhé!

trang hatsune
25 tháng 10 2016 lúc 22:24

ta có A=1+3+32+33+......+399+3100

=>3A= 3+32+33+34+......+3100+3101

- A=1+3+32+33+.......+399+3100

=> 2A=3101-1 mà 2A+1=3=>3101-1+1

                                           => 3101-3n

                                           => n= 101

k cho mik nha!

Thắng  Hoàng
2 tháng 10 2017 lúc 12:51

n=101 k để mik nên điểm nha^_^

dâu cute
Xem chi tiết
dâu cute
17 tháng 10 2021 lúc 7:55

mn mn ơiii

dâu cute
17 tháng 10 2021 lúc 7:56

helllppppppppp

Nguyễn Hoàng Minh
17 tháng 10 2021 lúc 8:07

\(2,\\ 3^{n-3}+2^{n-3}+3^{n+1}+2^{n+2}\\ =3^{n-3}\left(1+3^4\right)+2^{n-3}\left(1+2^5\right)\\ =3^{n-3}\cdot82+2^{n-3}\cdot33\)

Vì \(3^{n-3}\cdot82⋮2;⋮3\) nên \(3^{n-3}\cdot82⋮6\)

\(2^{n-3}\cdot33⋮2;⋮3\) nên \(2^{n-3}\cdot33⋮6\)

Do đó tổng trên chia hết cho 6 với mọi \(n\in N\)

nguyễn thị minh toàn
Xem chi tiết
Tuấn Trần Văn
Xem chi tiết
Nguyễn Hoàng Minh
13 tháng 10 2021 lúc 21:17

\(\Rightarrow3A=3+3^2+3^3+...+3^{11}\\ \Rightarrow3A-A=\left(3+3^2+...+3^{11}\right)-\left(1+3+...+3^{10}\right)\\ \Rightarrow2A=3^{11}-1\\ \Rightarrow2A+1=3^{11}=3^n\\ \Rightarrow n=11\)

trương thanh phong
Xem chi tiết
Phạm Tuấn Đạt
21 tháng 7 2018 lúc 10:40

\(A=3+3^2+...+3^{2008}\)

\(\Rightarrow3A=3^2+3^3+...+3^{2009}\)

\(\Rightarrow3A-A=3^{2009}-3\)

\(\Rightarrow2A+3=3^{2009}\)

Vậy n = 2009

Visdom
21 tháng 7 2018 lúc 10:42

\(A=3+3^2+3^3+...+3^{2008}\)

\(\Leftrightarrow3A=3^2+3^3+...+3^{2009}\)

\(\Leftrightarrow3A-A=3^{2009}-3\Leftrightarrow2A+3=3^{2009}\)

Vậy n=2009

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
29 tháng 10 2018 lúc 7:02

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 8 2018 lúc 8:56

a, 103a+1 => 3a+1 ∈ Ư(10) => 3a+1 ∈ {1;2;5;10} => a ∈ { 0 ; 1 3 ; 4 3 ; 3 }. Vì a ∈ N, a ∈ {0;3}

b, a+6a+1 => a+1+5 ⋮ a+1 => 5a+1 => a+1 ∈ Ư(5) =>  a+1 ∈ {1;5} => a ∈ {0;4}

c, 3a+72a+3 => 2.(3a+7) - 3(2a+3)2a+3 => 52a+3 => 2a+3 ∈ Ư(5)

=> 2a+3 ∈ {1;5} => a = 1

d, 6a+112a+3 => 3.(2a+3)+2 ⋮ 2a+3 => 2 ⋮ 2a+3 => 2a+3 ∈ Ư(2)

=> 2a+3 ∈ {1;2} => a ∈ ∅