Cho hình thang cân ABCD ( AB//CD). Chứng minh: AC=BD
1), Cho hình thang cân ABCD (AB // CD, AB < CD). Kẻ các đường cao AE, BF của hình thang. Chứng minh rằng DE = CF.
2) Cho hình thang cân ABCD (AB // CD).
a) Chứng minh:.
b) Gọi E là giao điểm của AC và BD. Chứng minh: .EA=EB
Câu 1:
Xét ΔAED vuông tại E và ΔBFC vuông tại F có
AD=BC
góc D=góc C
Do đó: ΔAED=ΔBFC
Suy ra: DE=CF
Bài 2:
b: Xét ΔBAD và ΔABC có
AB chung
AD=BC
BD=AC
Do đó: ΔBAD=ΔABC
Suy ra: góc EAB=góc EBA
=>ΔEAB cân tại E
=>EA=EB
Cho hình thang ABCD ( AB // CD ). Điểm E thuộc đường thẳng CD và BE // AC. Chứng minh AC = BD suy ra hình thang ABCD là hình thang cân.
Sửa đề: Cho hình thang ABCD(AB//CD) có AC=BD, điểm E thuộc đường thẳng CD sao cho BE//AC. Chứng minh ABCD là hình thang cân
Xét ΔABC và ΔECB có
\(\hat{ABC}=\hat{ECB}\) (hai góc so le trong, AB//CE)
BE chung
\(\hat{BCA}=\hat{EBC}\) (hai góc so le trong, AC//BE)
Do đó: ΔABC=ΔECB
=>AC=BE
mà AC=BD
nên BE=BD
=>ΔBED cân tại B
=>\(\hat{BDC}=\hat{BED}\)
mà \(\hat{BED}=\hat{ACD}\) (hai góc đồng vị; AC//BE)
nên \(\hat{BDC}=\hat{ACD}\)
Xét ΔBDC và ΔACD có
BD=AC
\(\hat{BDC}=\hat{ACD}\)
CD chung
Do đó: ΔBDC=ΔACD
=>\(\hat{BCD}=\hat{ADC}\)
=>ABCD là hình thang cân
Bài 1: Cho hình thang cân ABCD ( AB // CD) Gọi E là giao điểm của AC và BD. Chứng minh EA = EB.
Bài 2: Cho hình thang cân ABCD (AB//CD) có AB=3,BC=CD=13(cm). Kẻ các đường cao AK và BH.
a) Chứng minh rằng CH=DK.
b) Tính độ dài BH.
Bài 3: Hình thang cân ABCD (AB//CD) có Cˆ=600, DB là tia phân giác của góc D, AB=4cm.
a) Chứng minh rằng BD vuông góc với BC.
b) Tính chu vi hình thang.
Bài 4 : Cho hình thang MNPQ (MN là đáy nhỏ) có 2 đường chéo MP và NQ cắt nhau tại O và NMPˆ=MNQˆA.
a) Chứng minh tam giác OMN và OPQ cân tại O.
b) Chứng minh tứ giác MNPQ là hình thang cân.
c) Qua O vẽ đường thẳng EF//QP (E∈MQ,F∈NP). Chứng minh MNFE, FEQP là những hình thang cân.
Bài 5: Cho hình thang cân ABCD (AB//CD, AB < CD). AD cắt BC tại O.
a) Chứng minh rằng ΔOAB cân.
b) Gọi I, J lần lượt là trung điểm của AB và CD. Chứng minh rằng ba điểm I, J, O thẳng hàng.
c) Qua điểm M thuộc cạnh AC, vẽ đường thẳng song song với CD, cắt BD tại N. Chứng minh rằng MNAB, MNDC là các hình thang cân.
Bài 1:
Xét ΔABC và ΔBAD có
AB chung
BC=AD
AC=BD
Do đó: ΔABC=ΔBAD
Suy ra: \(\widehat{BAC}=\widehat{ABD}\)
hay \(\widehat{EAB}=\widehat{EBA}\)
hay ΔEAB cân tại E
1) Cho hình thang cân ABCD (AB // CD). a) Chứng minh:. b) Gọi E là giao điểm của AC và BD. Chứng minh: . 2) Cho hình thang cân ABCD có đáy nhỏ CD = a , . Đường chéo AC vuông góc với cạnh bên BC. a) Tính các góc của hình thang. b) Chứng minh AC là phân giác của góc . c) Tính diện tích của hình thang.
Cho hình thang ABCD (AB//CD). giả sử rằng AC = BD. Chứng minh rằng ABCD là 1 hình thang cân
Gọi giao điểm AC và BD là O
Có tam giác AOB đồng dạng với tam giác COD (g , g)
=> OC/AC = OD/BD
=> OC = OD
=> Tam giác OCD cân tại O
=> góc ACD = góc BDC (1)
Có: AC = BD, CD chung
=> tam giác ACD = tam giác BDC
=> góc ADC = góc BCD
=> tứ giác ABCD là hình thang cân
Bài 1: Cho hình thang cân ABCD ( AB // CD) Gọi E là giao điểm của AC và BD. Chứng minh EA = EB.
Bài 2: Cho hình thang cân ABCD (AB//CD) có AB=3,BC=CD=13(cm). Kẻ các đường cao AK và BH.
a) Chứng minh rằng CH=DK.
b) Tính độ dài BH.
Bài 1:
Xét ΔABC và ΔBAD có
AB chung
BC=AD
AC=BD
Do đó:ΔABC=ΔBAD
Suy ra: \(\widehat{BAC}=\widehat{ABD}\)
hay \(\widehat{EAB}=\widehat{EBA}\)
hay ΔEAB cân tại E
Cho hình thang ABCD có AB // CD. Chứng minh rằng: Nếu AD+AC=BC+BD thì tứ giác ABCD là hình thang cân
Cho ABCD là hình thang
AB // CD
AC = BD
Chứng minh : ABCD là hình thang cân
Tứ giác ABCD là hình thang có : AC =BD(gt)
\(\Rightarrow\)Tứ giác ABCD là hình thang cân
- Bạn đọc lại dấu hiệu nhận biết hình thang cân nhé
- Chúc bạn học tốt!!!
Cho hình thang cân ABCD (AB//CD) có AC vuông góc với BD tại O.
a) Chứng minh các tam giác OCD, OAB vuông cân.
b) Biết AB = 2cm, CD = 8cm, AD = 5cm. Tính diện tích hình thang ABCD.
. a) HS tự chứng minh
b) Kẻ đường cao AH, BK,chứng minh được DH = CK
Ta được H D = C D − A B 2 = 3 c m
Þ AH = 4cm Þ SABCD = 20cm2
Cho hình thang cân ABCD (AB // CD) và AB < CD, DA cắt CB tại I
a) Chứng minh IAB là tam giác cân
b) Chứng minh tam giác IBD = tam giác IAC
c) AC cắt BD tại K; chứng minh tam giác KAD = tam giác KBC
d) Chứng minh IK là trục đối xứng của hình thang ABCD
a: Ta có: \(\widehat{IAB}=\widehat{IDC}\)
\(\widehat{IBA}=\widehat{ICD}\)
mà \(\widehat{IDC}=\widehat{ICD}\)
nên \(\widehat{IAB}=\widehat{IBA}\)
hay ΔIAB cân tại I
b: Xét ΔIBD và ΔIAC có
IB=IA
\(\widehat{BID}\) chung
ID=IC
Do đó: ΔIBD=ΔIAC