tìm x 1-x=0
b3 tìm x
1. A = \(\dfrac{-2}{x-1}\) tìm x để A > 0 với x ≥ 0 , x ≠1
2. A = \(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\) tìm x để A < 1 với x ≥ 0, x≠1
1: Để A>0 thì x-1<0
hay x<1
Kết hợp ĐKXĐ, ta được: \(0\le x< 1\)
1) Để A > 0 thì:
\(x-1< 0\Leftrightarrow x< 1\)
\(\Rightarrow0\le x< 1\) và \(x\ne1\)
2) \(A=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}=1+\dfrac{2}{\sqrt{x}-1}\)
Để A<1 thì \(\dfrac{2}{\sqrt{x}-1}< 0\)
\(\Rightarrow\sqrt{x}-1< 0\Leftrightarrow\sqrt{x}< 1\)
Mà x\(\ge0,x\ne1\)
\(\Rightarrow0\le x< 1\)
Bài 2:
Để A<1 thì A-1<0
\(\Leftrightarrow\dfrac{\sqrt{x}+1-\sqrt{x}+1}{\sqrt{x}-1}< 0\)
\(\Leftrightarrow\dfrac{2}{\sqrt{x}-1}< 0\)
\(\Leftrightarrow\sqrt{x}-1< 0\)
hay x<1
Kết hợp ĐKXĐ, ta được: \(0\le x< 1\)
a, Cho `0<x<25`
Tìm GTLN:`(80-2x)(50-2x)x`
b, `0<x<2`. Tìm GTLN: `5x(2-x)`
c, `x≥2`. Tìm GTLN: `x + 1/x`
d, Cho `x,y>0, x+y≤1`. TÌm GTNN: `x + y + 1/x + 1/y`
d. Áp dụng BĐT Caushy Schwartz ta có:
\(x+y+\dfrac{1}{x}+\dfrac{1}{y}\le x+y+\dfrac{\left(1+1\right)^2}{x+y}=x+y+\dfrac{4}{x+y}\le1+\dfrac{4}{1}=5\)
-Dấu bằng xảy ra \(\Leftrightarrow x=y=\dfrac{1}{2}\)
c. Bạn kiểm tra lại đề nhé.
b. \(5x\left(2-x\right)=-5x\left(x-2\right)=-5\left(x^2-2x\right)=-5\left(x^2-2x+1-1\right)=-5\left(x-1\right)^2+5\le5\)-Dấu bằng xảy ra \(\Leftrightarrow x=1\)
a.
\(\left(80-2x\right)\left(50-2x\right)x=\dfrac{2}{3}\left(40-x\right)\left(50-2x\right)3x\le\dfrac{2}{3}\left(\dfrac{40-x+50-2x+3x}{3}\right)^3=18000\)
Dấu "=" xảy ra khi \(40-x=50-2x=3x\Leftrightarrow x=10\)
b.
\(5x\left(2-x\right)=5.x\left(2-x\right)\le\dfrac{5}{4}\left(x+2-x\right)^2=5\)
Dấu "=" xảy ra khi \(x=2-x\Rightarrow x=1\)
c.
Biểu thức này chỉ có min, ko có max
d.
\(x+y\le1\Rightarrow-\left(x+y\right)\ge-1\)
\(x+y+\dfrac{1}{x}+\dfrac{1}{y}=\left(4x+\dfrac{1}{x}\right)+\left(4y+\dfrac{1}{y}\right)-3\left(x+y\right)\ge2\sqrt{\dfrac{4x}{x}}+2\sqrt{\dfrac{4y}{y}}-3.1=5\)
Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)
9. A = \(\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\) tìm x để A>1 với x 0;x 1
10. P = \(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)Tìm x để P <1 với x 0 ; x 1
9.
\(A>1\Leftrightarrow\dfrac{\sqrt{x}-2}{\sqrt{x}-1}>1\)
\(\Leftrightarrow\dfrac{\sqrt{x}-2}{\sqrt{x}-1}-1>0\)
\(\Leftrightarrow\dfrac{\sqrt{x}-2-\sqrt{x}+1}{\sqrt{x}-1}>0\)
\(\Leftrightarrow\dfrac{-1}{\sqrt{x}-1}>0\)
\(\Leftrightarrow\sqrt{x}-1< 0\)
\(\Leftrightarrow x< 1\)
Kết hợp với điều kiện giả thiết.
10.
\(P< 1\Leftrightarrow\dfrac{\sqrt{x}+1}{\sqrt{x}-1}< 1\)
\(\Leftrightarrow\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-1< 0\)
\(\Leftrightarrow\dfrac{\sqrt{x}+1-\sqrt{x}+1}{\sqrt{x}-1}< 0\)
\(\Leftrightarrow\dfrac{2}{\sqrt{x}-1}< 0\)
\(\Leftrightarrow\sqrt{x}-1< 0\)
\(\Leftrightarrow x< 1\)
Kết hợp với điều kiện giả thiết.
Bài 9:
Để A>1 thì A-1>0
\(\Leftrightarrow\dfrac{\sqrt{x}-2-\sqrt{x}+1}{\sqrt{x}-1}>0\)
\(\Leftrightarrow\dfrac{-1}{\sqrt{x}-1}>0\)
\(\Leftrightarrow\sqrt{x}-1< 0\)
hay x<1
Kết hợp ĐKXĐ, ta được: \(0\le x< 1\)
Bài 10:
Để P<1 thì P-1<0
\(\Leftrightarrow\dfrac{\sqrt{x}+1-\sqrt{x}+1}{\sqrt{x}-1}< 0\)
\(\Leftrightarrow\dfrac{2}{\sqrt{x}-1}< 0\)
\(\Leftrightarrow\sqrt{x}-1< 0\)
hay x<1
Kết hợp ĐKXĐ, ta được: \(0\le x< 1\)
1. Cho B=(2+x/2-x -2-x/2+x +4x/4-x^2) : x-3/2x-x^2
a) Rút gọn B
b) Tìm gtri của B khi x=1/2 ; x=2
c) Tìm x để A>0 ; A≤0
d)TÌm x để A<1
2. CHo C= 1/x+1 - ( x^3-x/x^2+1)[ 1 / (x+1)^2 - 1 / x^2-1 ]
a)Rút gọn C
b)Tìm x khi C=1
c)Tìm gtri của C khi x=2
d)Tìm x để C>0; C<0
Cần trước sáng ,mai
7. P = \(\dfrac{x+\sqrt{x}}{\sqrt{x}-1}\) tìm x để P< 1 với x ≥ 0 , x ≠ 4
8. P = \(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\) tìm x để P < 1/4 với x≥0, x ≠ 1
8: Để \(P< \dfrac{1}{4}\) thì \(P-\dfrac{1}{4}< 0\)
\(\Leftrightarrow\dfrac{4\sqrt{x}-8-\sqrt{x}-1}{\sqrt{x}+1}< 0\)
\(\Leftrightarrow3\sqrt{x}< 9\)
hay x<9
Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0\le x< 9\\x\ne1\end{matrix}\right.\)
7.
\(P< 1\Leftrightarrow\dfrac{x+\sqrt{x}}{\sqrt{x}-1}< 1\)
\(\Leftrightarrow\dfrac{x+\sqrt{x}}{\sqrt{x}-1}-1< 0\)
\(\Leftrightarrow\dfrac{x+\sqrt{x}-\sqrt{x}+1}{\sqrt{x}-1}< 0\)
\(\Leftrightarrow\dfrac{x+1}{\sqrt{x}-1}< 0\)
\(\Leftrightarrow\sqrt{x}-1< 0\)
\(\Leftrightarrow x< 1\)
Vậy \(0\le x< 1\)
8.
\(P< \dfrac{1}{4}\Leftrightarrow\dfrac{\sqrt{x}-2}{\sqrt{x}+1}< \dfrac{1}{4}\)
\(\Leftrightarrow4\left(\sqrt{x}-2\right)< \sqrt{x}+1\)
\(\Leftrightarrow4\sqrt{x}-8< \sqrt{x}+1\)
\(\Leftrightarrow3\sqrt{x}< 9\)
\(\Leftrightarrow x< 9\)
Vậy \(0\le x< 9;x\ne1\)
1, Tìm x, biết
a, | x + 1 | + | x + 2| + | x + 3 | = x
b, | x - 3 | + | x - 1 | =3
2, Cho M = x + 2 \ x - 3
a, Tìm x để M = 0
b, Tìm x để M < 0
c, Tìm x để M > 0
Tìm x Î Z biết:
a) x ( x - 3) = 0;
b) x ( x + 9) = 0;
c) ( x + 1) ( x - 1) = 0;
d) ( x - 13 ) ( x 2 + 8 ) = 0 .
a) x Î{0;3}.
b) xÎ{0;-9}.
c) x Î{-l; 11}.
d) x = 13.
Tìm x thuộc Z biết a) x ( x - 3) = 0; b) x ( x + 9) = 0 c) ( x + 1) ( x - 1) = 0 d) ( x - 13) ( x 2 + 8) = 0
Tìm x
a) 4x(x + 1) = 8(x + 1)
b) x(x – 1) – 2(1 – x) = 0
c) 5x(x – 2) – (2 – x) = 0
d) 5x(x – 200) – x + 200 = 0
e) x3 + 4x = 0
f) (x + 1) = (x + 1)2
a) 4x(x+1)=8(x+1)
<=>4x(x+1)-8(x+1)=0
<=>(4x-8)(x+1)=0
<=>\(\left[\begin{array}{} 4x-8=0\\ x+1=0 \end{array} \right.\)
<=>\(\left[\begin{array}{} x=2\\ x=-1 \end{array} \right.\)
Vậy...
b)x(x-1)-2(1-x)=0
<=>(x+2)(x-1)=0
<=>\(\left[\begin{array}{} x+2=0\\ x-1=0 \end{array} \right.\)
<=>\(\left[\begin{array}{} x=-2\\ x=1 \end{array} \right.\)
Vậy...
c)5x(x-2)-(2-x)=0
<=>(5x+1)(x-2)=0
<=>\(\left[\begin{array}{} 5x+1=0\\ x-2 \end{array} \right.\)
<=>\(\left[\begin{array}{} x=-1/5\\ x=2 \end{array} \right.\)
d)5x(x-200)-x+200=0
<=>(5x-1)(x-200)=0
<=>\(\left[\begin{array}{} 5x-1=0\\ x-200=0 \end{array} \right.\)
<=>\(\left[\begin{array}{} x=1/5\\ x=200 \end{array} \right.\)
e)\(x^3+4x=0 \)
\(\Leftrightarrow x(x^2+4)=0 \)
\(\Leftrightarrow \left[\begin{array}{} x=0\\ x^2+4=0 (loại vì x^2+4>=0 với mọi x) \end{array} \right.\)
Vậy x=0
f)\((x+1)=(x+1)^2\)
\(\Leftrightarrow (x+1)-(x+1)^2=0\)
\(\Leftrightarrow (x+1)(1-x-1)=0\)
\(\Leftrightarrow (x+1)(-x)=0\)
\(\Leftrightarrow \left[\begin{array}{} x=-1\\ x=0 \end{array} \right.\)
Vậy....
1) Cho 0 < x < 2 Tìm min A = 2/(2-x) +1/x
2) Cho x>1 Tìm min A = x/2 +2/(x-1)
3) cho 0 < x<1 tìm min A = x/(x-1) +4/x