số 735a2b chia hết cho cả 5 và 9 nhưng ko chia hết cho 2
Tìm các chữ số a, b để:
a) Số 4a12b chia hết cho 2; 5 và 9.
b) Số 735a2b chia hết cho cả 5 và 9 nhưng không chia hết cho 2.
c) Số 40ab chia hết cho cả 2; 3 và 5.
a, b=0 ; a=2 b, b, b=5 ; a=1 c, b=0 ; a=5;8
a)Số 40ab chia hết cho cả 2; 3 và 5
b)số 735a2b chia hết cho cả 5 và 9 nhưng không chia hết cho 2
a) Số chia hết cho 2 và 5 thì chữ số tận cùng là 0
Số chia hết cho 3 khi tổng các chữ số chia hết cho 3
mà 4 + 0 = 4
Vậy a = 5 ; b = 0
b) Không chia hết cho 2 mà chia hết cho 5 khi chữ số tận cùng là 5
Số chia hết cho 9 khi tổng các chữ số chia hết cho 9
mà 7 + 3 + 5 + 2 + 5 = 22
Vậy a = 5 ; b = 5
Tìm các chữ số a,b để:
a) Số 735a2b chia hết cho cả 5 và 9 nhưng không chia hết cho 2
b) Số 40ab chia hết cho cả 2;3;5 và9
Ta có thể tìm các bội của một số khác 0 bằng cách nhân số đó lần lược cho 1, 2, 3, …
Ví dụ :
B(5) = {5.1, 4.2, 5.3, …} = {5, 10, 15, …}
Ta có thể tìm các ước của một số a (a > 1) bằng cách lần lược chia số a cho số tự nhiên từ 1 đến a để xét xem a chia hết cho những số nào, khi đó các số ấy là ước của a.
Bài 4: tìm các chữ số a,b để:
a. số 4a12b chia hết cho 2;5 và 9
b.số 5a43b chia hết cho cả 2;3 và 5
c. số 735a2b chia hết cho cả 5 và 9 nhưng không chia hết cho 2
bài 5:tổng sau có chia hết cho 8,cho 3 không
A=7+7^2+7^3+7^4+....+7^50 + 7^51
Bài 4: Để tìm các chữ số a, b thỏa mãn các điều kiện, ta sẽ kiểm tra từng trường hợp.
a. Để số 4a12b chia hết cho 2, 5 và 9, ta cần xét chữ số cuối cùng b. Vì số chia hết cho 2, nên b phải là số chẵn. Vì số chia hết cho 5, nên b phải là 0 hoặc 5. Vì số chia hết cho 9, nên tổng các chữ số trong số đó phải chia hết cho 9. Ta thử từng trường hợp:
Nếu b = 0, thì tổng các chữ số là 4 + a + 1 + 2 + 0 = 7 + a. Để 7 + a chia hết cho 9, ta có a = 2. Nếu b = 5, thì tổng các chữ số là 4 + a + 1 + 2 + 5 = 12 + a. Để 12 + a chia hết cho 9, ta có a = 6.Vậy, các giá trị thỏa mãn là a = 2 hoặc a = 6, và b = 0 hoặc b = 5.
b. Để số 5a43b chia hết cho 2, 3 và 5, ta cần xét chữ số cuối cùng b. Vì số chia hết cho 2, nên b phải là số chẵn. Vì số chia hết cho 3, nên tổng các chữ số trong số đó phải chia hết cho 3. Vì số chia hết cho 5, nên b phải là 0 hoặc 5. Ta thử từng trường hợp:
Nếu b = 0, thì tổng các chữ số là 5 + a + 4 + 3 + 0 = 12 + a. Để 12 + a chia hết cho 3, ta có a = 0 hoặc a = 3 hoặc a = 6 hoặc a = 9. Nếu b = 5, thì tổng các chữ số là 5 + a + 4 + 3 + 5 = 17 + a. Để 17 + a chia hết cho 3, ta có a = 1 hoặc a = 4 hoặc a = 7.Vậy, các giá trị thỏa mãn là a = 0 hoặc a = 3 hoặc a = 6 hoặc a = 9, và b = 0 hoặc b = 5.
c. Để số 735a2b chia hết cho 5 và 9, nhưng không chia hết cho 2, ta cần xét chữ số cuối cùng b. Vì số chia hết cho 5, nên b phải là 0 hoặc 5. Vì số chia hết cho 9, nên tổng các chữ số trong số đó phải chia hết cho 9. Ta thử từng trường hợp:
Nếu b = 0, thì tổng các chữ số là 7 + 3 + 5 + a + 2 + 0 = 17 + a. Để 17 + a chia hết cho 9, ta có a = 7 hoặc a = 8. Nếu b = 5, thì tổng các chữ số là 7 + 3 + 5 + a + 2 + 5 = 22 + a. Để 22 + a chia hết cho 9, ta có a = 2 hoặc a = 5 hoặc a = 8.Vậy, các giá trị thỏa mãn là a = 2 hoặc a = 5 hoặc a = 7 hoặc a = 8, và b = 0 hoặc b = 5.
Bài 5: Để xác định xem tổng A có chia hết cho 8 hay không, ta cần tính tổng A và kiểm tra xem nó có chia hết cho 8 hay không.
a)Số 135a chia hết cho cả 2,3,5,9
b)Số 735a2b chia hết cho 5 và 9 không chia hết cho 2
Số 1350 chia hết cho cả 2;3;5;9
Số 735525 chia hết cho 5 và 9 và không chia hết cho 2
Bài 4: tìm các chữ số a, b để:
b) số 5a43b chia hết cho cả 2; 5 và 9.
c) số 735a2b chia hết cho5 &9 không chia hết cho 2.
d) số 5a27b chia hết cho cả 2; 5 và 9
e) số 7a142b chia hết cho cả 2; 5 và 9.
f) số 2a41b chia hết cho cả 2; 5 và 9.
g) số 40ab chia hết cho cả 2; 3 và 5
b: Đặt \(A=\overline{5a43b}\)
A chia hết cho 2 và 5 nên A có tận cùng là 0
=>b=0
=>\(A=\overline{5a430}\)
A chia hết cho 9
=>5+a+4+3+0 chia hết cho 9
=>a+12 chia hết cho 9
=>a=6
=>Số cần tìm là 56430
c: Đặt \(B=\overline{735a2b}\)
B chia hết cho 5 và không chia hết cho 2 nên b=5
=>\(B=\overline{735a25}\)
B chia hết cho 9
=>7+3+5+a+2+5 chia hết cho 9
=>a+22 chia hết cho 9
=>a=5
Vậy: Số cần tìm là 735525
d: Đặt \(C=\overline{5a27b}\)
C chia hết cho 2 và 5 nên C có tận cùng là 0
=>b=0
=>\(C=\overline{5a270}\)
C chia hết cho 9
=>5+a+2+7+0 chia hết cho 9
=>a+14 chia hết cho 9
=>a=4
Vậy: Số cần tìm là 54270
e: Đặt \(D=\overline{7a142b}\)
Vì D chia hết cho cả 2 và 5 nên D có tận cùng là 0
=>b=0
=>\(D=\overline{7a1420}\)
D chia hết cho 9
=>7+a+1+4+2+0 chia hết cho 9
=>a+14 chia hết cho 9
=>a=4
=>Số cần tìm là 741420
g: \(X=\overline{40ab}\)
X chia hết cho 2 và 5 nên b=0
=>\(X=\overline{40a0}\)
X chia hết cho 3
=>4+a+0+0 chia hết cho 3
=>a+4 chia hết cho 3
=>\(a\in\left\{2;5;8\right\}\)
a) cho A =963+2493+351+x với x thuộc N . Tìm điều kiện của x để A chia hết /ko chia hết cho 9
b)thay * bằng các chữ số nào để đc số 548* chia hết cho cả 3 va 5
c)tìm các cs a;b để :
-số 735a2b chia hết cho cả 5 và 9 nhưng ko chia hết cho 2
-số 7a142b chia hết cho cả 2 ;5;9
a/ A=3087 + x = 9.343 + x. Để A chia hết cho 9 => x = bội của 9
Để A không chia hết cho 9 => x là tập hợp các số không chia hết cho 9
b/ để 548* chia hết cho 5 thì * = {0; 5}
Với * = 0 thì 548* = 5480 không chia hết cho 3
Với * = 5 thì 548* = 5485 không chia hết cho 3
=> không có số * nào thuộc N thoả mãn điều kiện đề bài
c/
>> Để 735a2b chia hết cho 5 nhưng không chia hết cho 2 => b = 5 => 735a2b = 735a25
Để 735a25 chia hết cho 9 => 7+3+5+a+2+5=22+a phải chia hết cho 9 => a=5
>> Để 7a142b chia hết cho cả 2 và 5 => b=0 => 7a142b = 7a1420
Để 7a1420 chia hết cho 9 => 7+a+1+4+2=14+a phải chia hết cho 9 => a=4
Tìm các chữ số a, b để :
a) Số 4a12b chia hết cho cả 2 ; 5 và 9
b) Số 735a2b chia hết cho cả 5 và 9 nhưng không chia hết cho 2
c) Số 40ab chia hết cho cả 2 ; 3 và 5
Tìm các chữ số a, b để:
a) Số 4a12b chia hết cho cả 2; 5 và 9.
b) Số 5a43b chia hết cho cả 2; 5 và 9.
c) Số 735a2b chia hết cho cả 5 và 9 nhưng không chia hết cho 2.
d) Số 5a27b chia hết cho cả 2; 5 và 9.
b) Số 2a19b chia hết cho cả 2; 5 và 9.
c) Số 7a142b chia hết cho cả 2; 5 và 9.
d) Số 2a41b chia hết cho cả 2; 5 và 9.
e) Số 40ab chia hết cho cả 2; 3
a)Để 4a12b chia hết cho 2 và 5 thì b=0
Ta được số 4a120
Để 4a120 chia hết cho 9 thì (4+a+1+2+0) chia hết cho 9
=>(7+a) chia hết cho 9
=> a=9
Ta được số 42120
Vậy số cần tìm là 42120
a)42120
b)26190
c)735525
d)54270
b)26190
c)741420
d)22410
e)4002
cau e con nhieu cach am nhung minh cinh neu mot cach thoi nhe