giải tam giác ABC vuông tại C có AB=5cm,AC=3cm
. Tam giác ABC có BC = 3cm ; AC = 5cm ; AB = 4cm. Tam giác ABC vuông tại đâu?
A. Tại B B. Tại C C. Tại A
D. Không phải là tam giác vuông
Cho tam giác ABC vuông tại B, có AB bằng 3cm, BC bằng 5cm. Hãy giải tam giác vuông ABC.
\(AC=\sqrt{3^2+5^2}=\sqrt{34}\left(cm\right)\)
Xét ΔABC vuông tại B có
\(\sin\widehat{A}=\dfrac{BC}{AC}=\dfrac{5\sqrt{34}}{34}\)
nên \(\widehat{A}\simeq59^0\)
hay \(\widehat{C}=31^0\)
cho tam giác ABC có AC=4cm, AB=3cm, BC=5cm. Chứng minh tam giác ABC vuông tại A ( nhớ ghi rõ cách giải và lời giải nhó )
Thank you UnU :<<
giả sử tam giác ABC vuông tại A
Theo định lí Pytago ta có : \(BC^2=AB^2+AC^2\Rightarrow25=16+9\)* đúng *
Vậy giả sử là đúng hay tam giác ABC vuông tại A ( đpcm )
cho tam giác abc vuông tại b. tìm các tỉ số lượng giác của góc c sau đó tính góc b,c khi: a,bc=5cm,ab=12cm b,bc=10cm,ac=3cm c,ac=5cm,ab:3cm.
a: AC=căn 5^2+12^2=13cm
sin C=AB/AC=12/13
cos C=5/13
tan C=12/5
cot C=1:12/5=5/12
b: AC=căn 10^2+3^2=căn 109(cm)
sin C=AB/AC=3/căn 109
cos C=BC/AC=10/căn 109
tan C=AB/BC=3/10
cot C=10/3
c: BC=căn 5^2-3^2=4cm
sin C=AB/AC=3/5
cos C=4/5
tan C=3/4
cot C=4/3
Cho tam giác ABC vuông tại A có AC=3cm, AB=4cm, BC=5cm. a)Chứng minh tam giác ABC vuông. Tính góc B và C b) Phân giác của góc A cắt BC tại D. Tính BD và CD.
a) Xét ΔABC có
\(BC^2=AB^2+AC^2\left(5^2=3^2+4^2\right)\)
nên ΔABC vuông tại A(Định lí Pytago đảo)
Xét ΔABC vuông tại A có
\(\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{4}{5}\)
nên \(\widehat{C}\simeq53^0\)
\(\Leftrightarrow\widehat{B}=37^0\)
b) Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)
hay \(\dfrac{BD}{4}=\dfrac{CD}{3}\)
mà BD+CD=5
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{4}=\dfrac{CD}{3}=\dfrac{BD+CD}{4+3}=\dfrac{5}{7}\)
Do đó: \(BD=\dfrac{20}{7}cm;CD=\dfrac{15}{7}cm\)
a:
Sửa đề tam giác DEC
Xet ΔABC vuông tại A và ΔDEC vuông tại D có
góc C chung
=>ΔABC đồng dạng với ΔDEC
b: \(BC=\sqrt{3^2+5^2}=\sqrt{34}\left(cm\right)\)
\(AD=\dfrac{2\cdot3\cdot5}{3+5}\cdot cos45=\dfrac{15\sqrt{2}}{8}\left(cm\right)\)
AD là phân giác
=>BD/AB=CD/AC
=>\(\dfrac{BD}{3}=\dfrac{CD}{5}=\dfrac{\sqrt{34}}{8}\)
=>\(BD=\dfrac{3\sqrt{34}}{8}\left(cm\right)\)
cho tam giác ABC có AB=3CM AC= 5CM BC=4CM
a,,CHỨNG tỏ tam giác abc vuông tại b
Áp dụng đlý Pytago vào tam giác ABC:
AC2=BC2+AB2
52=42+32
52=25
Vậy tam giác ABC là tam giác vuông tại B (dpcm)
Cho tam giác ABC có AB=3cm, AC=4cm, BC=5cm
a,tam giác ABC vuông tại A
b, vẽ tia pg BD( D thuộc AC), từ D kẻ DE vuông góc vs BC (E thuộc BC)
cmr: DA=DE
c, DE cắt AB tại F, cmr tam giác ADF= tam giác EDC
Ghi rõ lời giải nhak:^
Làm đúng mik tích cho nek ^^
a, Xét \(\Delta ABC\) có:
\(BC^2=5^2=25\)
\(AB^2+AC^2=3^2+4^2=25\)
\(\Rightarrow BC^2=AB^2+AC^2\)
\(\Rightarrow\Delta ABC\) vuông tại A (định lí Pytago đảo) (đpcm)
b, Ta có: \(\widehat{BAD}=90^o\) (vì \(\Delta ABC\) vuông tại A)
\(\widehat{BED}=90^o\) (vì \(DE\perp BC\) tại E)
\(\Rightarrow\widehat{BAD}=\widehat{BED}=90^o\)
Xét \(\Delta ABD\) và \(BDE\) có:
\(\widehat{BAD}=\widehat{BED}=90^o\) (chứng minh trên)
BD cạnh chung
\(\widehat{ABD}=\widehat{DBE}\) (vì BD là tia phân giác của \(\widehat{ABC}\))
\(\Rightarrow\Delta ABD=\Delta EBD\)(cạnh huyền - góc nhọn)
\(\Rightarrow AD=DE\) (2 cạnh tương ứng) (đpcm)
c, Ta có: \(\widehat{DAF}=90^o\) (vì kề bù với \(\widehat{BAD}=90^o\))
\(\widehat{CED}=90^o\) (vì \(DE\perp BC\) tại E)
\(\Rightarrow\widehat{DEC}=\widehat{DAF}\)
Xét \(\Delta ADF\) và \(\Delta CDE\) có:
\(\widehat{DEC}=\widehat{DEF}\) (chứng minh trên)
AD = DE (vì \(\Delta ADF=\Delta EDC\))
\(\widehat{ADF}=\widehat{CDE}\) (2 góc đối đỉnh)
\(\Rightarrow\Delta ADF=\Delta EDC\left(g.c.g\right)\) (đpcm)
Cho tam giác ABC có AB = 3cm , AC = 4 cm , BC = 5cm
a) Chứng tỏ tam giác ABC vuông tại A
b) Vẽ phân giác BD ( D thuộc AC ) , từ D vẽ DE vuông tại BC ( E thuộc BC ) . C /m DA = DE
c) ED cắt AB tại F . C / m tam giác ADF = tam giác EDC rồi => DF > DE
Cho tam giác ABC vuông tại A, có AB = 3cm, BC =5cm. Trên cạnh BC lấy điểm D sao cho BD = 3cm. Đường thẳng vuông góc với BC tại D cắt cạnh AC tại M, cắt tia BA tại N.
a/ Tính AC
b/ So sánh các góc của tam giác ABC
c/ c) Chứng minh MA = MD và tam giác MNC cân
a: AC=4cm
b: Xét ΔABC có AB<AC<BC
nên \(\widehat{C}< \widehat{B}< \widehat{A}\)
c: Xét ΔBAM vuông tại A và ΔBDM vuông tại D có
BM chung
BA=BD
Do đó: ΔBAM=ΔBDM
Suy ra: MA=MD
Xét ΔAMN vuông tại A và ΔDMC vuông tại D có
MA=MD
\(\widehat{AMN}=\widehat{DMC}\)
Do đó: ΔAMN=ΔDMC
Suy ra: MN=MC
hay ΔMNC cân tại M