tìm m để pt x^2-4(m+1)x+m+1 có 2 nghiệm dương phân biệt
(m-1)x^2-2mx+m-2=0
a)Tìm m để pt có 2 nghiệm trái dấu
b) tìm m để pt có nghiệm dương phân biệt
(m-1)x2-2mx+m-2=0(m\(\ne1\) )
\(\Delta\)'=\(m^2-\left(m-2\right)\left(m-1\right)\)
=\(m^2-m^2+m+2m-2\)
=3m-2
Để pt có nghiệm 2 ngiệm trái dấu thì \(\Delta\) ' =3m-2>0\(\Leftrightarrow m>\dfrac{2}{3}\)
Áp dụng hệ thức Viet, ta có
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2m}{m-1}\\x_1.x_2=\dfrac{m-2}{m-1}\end{matrix}\right.\)
Để PT có 2 nghiệm trái dấu thì x1x2<0\(\Leftrightarrow\dfrac{m-2}{m-1}< 0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}m-2< 0\\m-1>0\end{matrix}\right.\\\left\{{}\begin{matrix}m-2>0\\m-1< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\)\(\left[{}\begin{matrix}\left\{{}\begin{matrix}m< 2\\m>1\end{matrix}\right.\\\left\{{}\begin{matrix}m>2\\m< 1\end{matrix}\right.\end{matrix}\right.\)\(\Rightarrow1< m< 2\)
Vậy 1<m<2 thì pt có 2 nghiệm trái dấu
câu b
.Với m=1\(\Rightarrow-2x-1=0\Leftrightarrow x=\dfrac{-1}{2}\left(l\right)\)
.Với \(m\ne1\)
\(\Rightarrow\Delta\)'=3m-2\(\ge0\Leftrightarrow m\ge\dfrac{2}{3}\)
Cho pt x^2 -2(m-1).x-4m = 0 a) tìm m để pt có 2 nghiệm dương b) tìn m để pt có 2 nghiệm âm phân biệt
∆' = m² - 2m + 1 + 4m
= m² + 2m + 1
= (m + 1)² ≥ 0 với mọi m
a) Để phương trình có hai nghiệm dương thì:
S = x₁ + x₂ = 2(m - 1) > 0
P = x₁.x₂ = -4m > 0
*) 2(m - 1) > 0
m - 1 > 0
m > 1 (1)
*) -4m > 0
m < 0 (2)
Kết hợp (1) và (2) ta suy ra không tìm được m để phương trình có hai nghiệm dương.
b) Để phương trình có hai nghiệm âm phân biệt thì
∆ > 0; S < 0; P > 0
*) ∆ > 0
⇔ (m + 1)² > 0
⇔ m + 1 ≠ 0
⇔ m ≠ -1 (3)
*) S = 2(m - 1) < 0
⇔ m - 1 < 0
⇔ m < 1 (4)
*) P > 0
⇔ -4m < 0
⇔ m < 0 (5)
Từ (3), (4) và (5) ⇒ m < 1
Vậy với m < 1 thì phương trình đã cho có hai nghiệm âm phân biệt
\(x^2-2\left(m-1\right)x-4m=0\)
\(b,\) Để pt có 2 nghiệm âm phân biệt thì \(\left\{{}\begin{matrix}a\ne0\\-\dfrac{b}{a}< 0\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{2\left(m-1\right)}{1}< 0\)
\(\Leftrightarrow2m-2< 0\)
\(\Leftrightarrow2m< 2\)
\(\Leftrightarrow m< 1\)
Vậy m < 1 thì pt có 2 nghiệm âm phân biệt
X^2-2(m-1)x+m+1=0
A; tìm m để pt có 2 nghiệm trái dấu
B: tìm m để pt có hai nghiệm dương phân biệt
Tìm m để pt : (x2- x - m)\(\sqrt{x}\) = 0 có 1 nghiệm phân biệt
Tìm m để pt : (x2- x - m)\(\sqrt{x}\) = 0 có 2 nghiệm phân biệt
Tìm m để pt : (x2- x - m)\(\sqrt{x}\) = 0 có 3 nghiệm phân biệt
ĐKXĐ: \(x\ge0\)
\(\left(x^2-x-m\right)\sqrt{x}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2-x-m=0\left(1\right)\end{matrix}\right.\)
Giả sử (1) có nghiệm thì theo Viet ta có \(x_1+x_2=1>0\Rightarrow\left(1\right)\) luôn có ít nhất 1 nghiệm dương nếu có nghiệm
Do đó:
a. Để pt có 1 nghiệm \(\Leftrightarrow\left(1\right)\) vô nghiệm
\(\Leftrightarrow\Delta=1+4m< 0\Leftrightarrow m< -\dfrac{1}{4}\)
b. Để pt có 2 nghiệm pb
TH1: (1) có 1 nghiệm dương và 1 nghiệm bằng 0
\(\Leftrightarrow m=0\)
TH2: (1) có 2 nghiệm trái dấu
\(\Leftrightarrow x_1x_2=-m< 0\Leftrightarrow m>0\)
\(\Rightarrow m\ge0\)
c. Để pt có 3 nghiệm pb \(\Leftrightarrow\) (1) có 2 nghiệm dương pb
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=1+4m>0\\x_1x_2=-m>0\\\end{matrix}\right.\) \(\Leftrightarrow-\dfrac{1}{4}< m< 0\)
cho PT : \(^{x^2-2\left(m+1\right)x+m^2-4m+5=0}\)
tìm m để PT vô nghiệm
tìm m để PT có nghiệm kép
tìm m để PT có 2 nghiệm phân biệt đều dương
Cho phương trình \(x^3+\left(1+m\right)x-m^2=0\)
1) Tìm m để phương trình có đúng 1 nghiệm
2) Tìm m để PT có 2 nghiệm
3) Tìm m để phương trình có 3 nghiệm
4) Tìm m để phương trình có 3 nghiệm dương phân biệt
5) Tìm m để phương trình có 2 nghiệm âm phân biệt
cho pt -x^2+3x+m-1=0
a,tìm m để pt có 2 nghiệm dương phân biệt
b,tìm m để pt có 2 nghiệm x1,x2 tm x1^3+x2^3=18
x^2-3x-(m-1)=0(1)
a)Dể phương trình có 2 nghiệm dương phân biệt:delta>0,S>0,P>0
9+4m-4>0>>>m>-5/4;S=3>0;P=m-1>0>>m>1.
>>>>Để(1) có 2 nghiệm phân biệt thì m>1.
b)x1^3+x2^3=18>>>(x1+x2)(x1^2-x1x2+x2^2)=18>>>x1^2-x1x2+x2^2=6
>>>(x1+x2)^2-3x1x2=6>>>3x1x2=3>>>x1x2=1
-(m-1)=1>>>m=0.
Vậy m=0
cho pt: \(x^2-2\left(m+1\right)x+m-4=0\)
a) Tìm m để pt có 2 nghiệm đối nhau
b) CMR: Pt luôn có 2 nghiệm phân biệt với mọi m
c) CMR biểu thức: \(x_1\left(1-x_2\right)+x_2\left(1-x_1\right)\)Không phụ thuộc vào m
e) xác định m để pt có 2 nghiệm phân biệt dương ?
1,Tìm m để pt có \(\sqrt{2x^2+mx}=3-x\)
a, 1 nghiệm
b, 2 nghiệm phân biệt
2,Tìm m để pt có 2 nghiệm phân biệt \(\sqrt{x+2}+\sqrt{6-x}-\sqrt{\left(x+2\right)\left(6-x\right)}=m\)