∆' = m² - 2m + 1 + 4m
= m² + 2m + 1
= (m + 1)² ≥ 0 với mọi m
a) Để phương trình có hai nghiệm dương thì:
S = x₁ + x₂ = 2(m - 1) > 0
P = x₁.x₂ = -4m > 0
*) 2(m - 1) > 0
m - 1 > 0
m > 1 (1)
*) -4m > 0
m < 0 (2)
Kết hợp (1) và (2) ta suy ra không tìm được m để phương trình có hai nghiệm dương.
b) Để phương trình có hai nghiệm âm phân biệt thì
∆ > 0; S < 0; P > 0
*) ∆ > 0
⇔ (m + 1)² > 0
⇔ m + 1 ≠ 0
⇔ m ≠ -1 (3)
*) S = 2(m - 1) < 0
⇔ m - 1 < 0
⇔ m < 1 (4)
*) P > 0
⇔ -4m < 0
⇔ m < 0 (5)
Từ (3), (4) và (5) ⇒ m < 1
Vậy với m < 1 thì phương trình đã cho có hai nghiệm âm phân biệt
\(x^2-2\left(m-1\right)x-4m=0\)
\(b,\) Để pt có 2 nghiệm âm phân biệt thì \(\left\{{}\begin{matrix}a\ne0\\-\dfrac{b}{a}< 0\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{2\left(m-1\right)}{1}< 0\)
\(\Leftrightarrow2m-2< 0\)
\(\Leftrightarrow2m< 2\)
\(\Leftrightarrow m< 1\)
Vậy m < 1 thì pt có 2 nghiệm âm phân biệt