Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
hello
Xem chi tiết
Nguyễn Ngọc Minh Hoài
29 tháng 10 2017 lúc 20:12

Phân tích đa thức thành nhân tử

(x+3)(x6)+x29

Tk                                      nha !

pham trung thanh
29 tháng 10 2017 lúc 20:18

\(\left(x+3\right)\left(x-6\right)+x^2-9\)

\(=x^2-3x-18+x^2-9\)

\(=2x^2-3x-27\)

\(=\left(2x^2+6x\right)-\left(9x+27\right)\)

\(=\left(x+3\right)\left(2x-9\right)\)

Kenny
Xem chi tiết
Rhider
6 tháng 1 2022 lúc 17:15

x3+27+(x+3)(x+9)

= (x+3)(x2-3x+9)+(x+3)(x+9)

= (x+3)(x2-3x+9+x+9)

=(x+3)(x2-2x+18)

Nguyễn Hoàng Minh
6 tháng 1 2022 lúc 17:16

\(=\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)\\ =\left(x+3\right)\left(x^2-3x+9+x-9\right)\\ =\left(x+3\right)\left(x^2-2x\right)=x\left(x-2\right)\left(x+3\right)\)

Phùng Kim Thanh
6 tháng 1 2022 lúc 17:16

x3+27+(x+3)(x+9)

= (x+3)(x2-3x+9)+(x+3)(x+9)

= (x+3)(x2-3x+9+x+9)

=(x+3)(x2-2x+18)

Phong Thế
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
11 tháng 10 2020 lúc 10:33

Rút gọn thôi chứ phân tích sao được ._.

( x - 3 )2 - ( 4x + 5 )2 - 9( x + 1 )2 - 6( x - 3 )( x + 1 )

= x2 - 6x + 9 - ( 16x2 + 40x + 25 ) - 9( x2 + 2x + 1 ) - 6( x2 - 2x - 3 )

= x2 - 6x + 9 - 16x2 - 40x - 25 - 9x2 - 18x - 9 - 6x2 + 12x + 18

= -30x2 - 52x - 7

Khách vãng lai đã xóa
Nguyễn Minh Đăng
11 tháng 10 2020 lúc 10:48

Sửa đề lại 1 chút là phân tích được mà bn Quỳnh:))

Ta có: \(\left(x-3\right)^2-\left(4x+5\right)^2+9\left(x+1\right)^2-6\left(x-3\right)\left(x+1\right)\)

\(=\left[\left(x-3\right)^2-6\left(x-3\right)\left(x+1\right)+9\left(x+1\right)^2\right]-\left(4x+5\right)^2\)

\(=\left(x-3-9x-9\right)^2-\left(4x+5\right)^2\)

\(=\left(8x+12\right)^2-\left(4x+5\right)^2\)

\(=\left(4x+7\right)\left(12x+17\right)\)

Khách vãng lai đã xóa
Nguyễn Xuân Thành
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 12 2023 lúc 13:13

Bài 2:

1: \(\left(2x-1\right)^2-4\left(2x-1\right)=0\)

=>\(\left(2x-1\right)\left(2x-1-4\right)=0\)

=>(2x-1)(2x-5)=0

=>\(\left[{}\begin{matrix}2x-1=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{5}{2}\end{matrix}\right.\)

2: \(9x^3-x=0\)

=>\(x\left(9x^2-1\right)=0\)

=>x(3x-1)(3x+1)=0

=>\(\left[{}\begin{matrix}x=0\\3x-1=0\\3x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{3}\\x=-\dfrac{1}{3}\end{matrix}\right.\)

3: \(\left(3-2x\right)^2-2\left(2x-3\right)=0\)

=>\(\left(2x-3\right)^2-2\left(2x-3\right)=0\)

=>(2x-3)(2x-3-2)=0

=>(2x-3)(2x-5)=0

=>\(\left[{}\begin{matrix}2x-3=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{5}{2}\end{matrix}\right.\)

4: \(\left(2x-5\right)\left(x+5\right)-10x+25=0\)

=>\(2x^2+10x-5x-25-10x+25=0\)

=>\(2x^2-5x=0\)

=>\(x\left(2x-5\right)=0\)

=>\(\left[{}\begin{matrix}x=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{5}{2}\end{matrix}\right.\)

Bài 1:

1: \(3x^3y^2-6xy\)

\(=3xy\cdot x^2y-3xy\cdot2\)

\(=3xy\left(x^2y-2\right)\)

2: \(\left(x-2y\right)\left(x+3y\right)-2\left(x-2y\right)\)

\(=\left(x-2y\right)\cdot\left(x+3y\right)-2\cdot\left(x-2y\right)\)

\(=\left(x-2y\right)\left(x+3y-2\right)\)

3: \(\left(3x-1\right)\left(x-2y\right)-5x\left(2y-x\right)\)

\(=\left(3x-1\right)\left(x-2y\right)+5x\left(x-2y\right)\)

\(=(x-2y)(3x-1+5x)\)

\(=\left(x-2y\right)\left(8x-1\right)\)

4: \(x^2-y^2-6y-9\)

\(=x^2-\left(y^2+6y+9\right)\)

\(=x^2-\left(y+3\right)^2\)

\(=\left(x-y-3\right)\left(x+y+3\right)\)

5: \(\left(3x-y\right)^2-4y^2\)

\(=\left(3x-y\right)^2-\left(2y\right)^2\)

\(=\left(3x-y-2y\right)\left(3x-y+2y\right)\)

\(=\left(3x-3y\right)\left(3x+y\right)\)

\(=3\left(x-y\right)\left(3x+y\right)\)

6: \(4x^2-9y^2-4x+1\)

\(=\left(4x^2-4x+1\right)-9y^2\)

\(=\left(2x-1\right)^2-\left(3y\right)^2\)

\(=\left(2x-1-3y\right)\left(2x-1+3y\right)\)

8: \(x^2y-xy^2-2x+2y\)

\(=xy\left(x-y\right)-2\left(x-y\right)\)

\(=\left(x-y\right)\left(xy-2\right)\)

9: \(x^2-y^2-2x+2y\)

\(=\left(x^2-y^2\right)-\left(2x-2y\right)\)

\(=\left(x-y\right)\left(x+y\right)-2\left(x-y\right)\)

\(=\left(x-y\right)\left(x+y-2\right)\)

phùng phương thảo
Xem chi tiết
Nguyễn Anh Quân
13 tháng 1 2018 lúc 13:14

 = 9.[(x^4+2x^2+1)-x^2] - (x^2+x+1)^2

 = 9.[(x^2+1)^2-x^2] - (x^2+x+1)^2

 = 9.(x^2+x+1).(x^2-x+1)-(x^2+x+1)^2

 = (x^2+x+1).(9x^2-9x+9-x^2-x-1)

 = (x^2+x+1).(8x^2-10x+8)

 = 2.(x^2+x+1).(4x^2--5x+4)

Tk mk nha nếu đúng

cherry moon
Xem chi tiết
Lê Tài Bảo Châu
23 tháng 10 2019 lúc 17:16

\(\left(x^2+4x+6\right)\left(x^2+6x+6\right)-3x^2\left(1\right)\)

Đặt \(x^2+5x+6=t\)Thay vào (1) ta được:

\(\left(t-x\right)\left(t+x\right)-3x^2\)

\(=t^2-x^2-3x^2\)

\(=t^2-4x^2\)

\(=\left(t-2x\right)\left(t+2x\right)\)Thay \(t=x^2+5x+6\)ta được:

\(\left(x^2+5x+6-2x\right)\left(x^2+5x+6+2x\right)\)

\(=\left(x^2+3x+6\right)\left(x^2+7x+6\right)\)

\(=\left(x^2+3x+6\right)\left(x^2+x+6x+6\right)\)

\(=\left(x^2+3x+6\right)\left[x\left(x+1\right)+6\left(x+1\right)\right]\)

\(=\left(x^2+3x+6\right)\left(x+1\right)\left(x+6\right)\)

Khách vãng lai đã xóa
Nguyễn Thị Minh Thư
Xem chi tiết
Nguyễn Việt Lâm
19 tháng 8 2021 lúc 17:30

\(=2\left(x^2+x-5\right)^2-5\left(x^2+x-5\right)+3\)

\(=2\left(x^2+x-5\right)-2\left(x^2+x-5\right)-3\left(x^2+x-5\right)+3\)

\(=2\left(x^2+x-5\right)\left(x^2+x-6\right)-3\left(x^2+x-6\right)\)

\(=\left(x^2+x-6\right)\left(2x^2+2x-13\right)\)

\(=\left(x-2\right)\left(x+3\right)\left(2x^2+2x-13\right)\)

Lấp La Lấp Lánh
19 tháng 8 2021 lúc 17:41

\(C=2\left(x^2+x-5\right)^2-5\left(x^2+x\right)+28\)

Đặt t=\(x^2+x\)

\(\Rightarrow C=2\left(t-5\right)^2-5t+28=2t^2-20t+50-5t+28=2t^2-25t+78=2\left(t-\dfrac{13}{2}\right)\left(t-6\right)\)

Thay t: \(C=2\left(t-\dfrac{13}{2}\right)\left(t-6\right)=2\left(x^2+x-\dfrac{13}{2}\right)\left(x^2+x-6\right)=2\left(x-2\right)\left(x+3\right)\left(x^2+x-\dfrac{13}{2}\right)\)

Nguyễn Lê Phước Thịnh
19 tháng 8 2021 lúc 22:50

Ta có: \(C=2\left(x^2+x-5\right)^2-5\left(x^2+x\right)+28\)

\(=2\left(x^2+x-5\right)^2-5\left(x^2+x-5\right)+3\)

\(=\left(x-2\right)\left(x+3\right)\left(2x^2+2x-13\right)\)

Phạm Bích Ngọc
Xem chi tiết
Võ Đông Anh Tuấn
2 tháng 8 2016 lúc 8:59

\(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16\)

\(=\left(x+2\right)\left(x+8\right)\left(x+4\right)\left(x+6\right)+16\)

\(=\left(x^2+8x+2x+16\right)\left(x^2+6x+4x+24\right)+16\)

\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)

\(=\left(x^2+10x+16\right)\left(x^2+10+16+8\right)+16\)

\(=\left(x^2+10x+16\right)^2+2.\left(x^2+10x+16\right).4+4^2\)

\(=\left(x^2+10x+16+4\right)^2\)

\(=\left(x^2+10+20\right)^2\)

 

Nguyễn Hải Anh Jmg
2 tháng 8 2016 lúc 12:16

\(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16\)
\(=\left[\left(x+2\right)\left(x+8\right)\right]\left[\left(x+4\right)\left(x+6\right)\right]+16\)
\(=\left(x^2+8x+2x+16\right) \left(x^2+6x+4x+24\right)+16\)
\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\left(1\right)\)
\(\text{Đặt }x^2+10x+\frac{16+24}{2}=t\)
\(\text{hay }x^2+10x+20=t\)
\(\left(1\right)\Rightarrow\left(t-4\right)\left(t+4\right)+16\)
\(=t^2-4^2+16\)
\(=t^2-16+16\)
\(=t^2\)
\(=\left(x^2+10x+20\right)^2\)
 

Nguyễn Thảo Nguyên
Xem chi tiết
Lê Tài Bảo Châu
24 tháng 9 2019 lúc 22:18

\(\left(x-2\right)\left(x-4\right)\left(x-6\right)\left(x-8\right)+16\)

\(=\left[\left(x-2\right)\left(x-8\right)\right]\left[\left(x-4\right)\left(x-6\right)\right]+16\)

\(=\left(x^2-10x+16\right)\left(x^2-10x+24\right)+16\)(1) 

Đặt \(x^2-10x+20=t\)thay vào (1) ta được : 

\(\left(t-4\right)\left(t+4\right)+16\)

\(=t^2-16+16\)

\(=t^2\)Thay \(t=x^2-10x+20\)ta được :

\(\left(x^2-10x+20\right)^2\)

\(=\left(x^2-2.5.x+25-25+20\right)^2\)

\(=\left[\left(x-5\right)^2-5\right]^2\)

\(=\left(x-5-\sqrt{5}\right)^2\left(x-5+\sqrt{5}\right)^2\)