Tìm X, 20-(X:3)=45
\(\sqrt{4x+20}-3\sqrt{5+x}+\dfrac{4}{3}\sqrt{9x+45}=6\) tìm x
Ta có: \(\sqrt{4x+20}-3\sqrt{x+5}+\dfrac{4}{3}\sqrt{9x+45}=6\)
\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)
\(\Leftrightarrow3\sqrt{x+5}=6\)
\(\Leftrightarrow\sqrt{x+5}=2\)
\(\Leftrightarrow x+5=4\)
hay x=-1
\(\sqrt{4x+20}-3\sqrt{x+5}+\dfrac{4}{3}\cdot\sqrt{9x+45}=6\left(x\ge-5\right)\)
\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+\dfrac{4}{3}\cdot3\cdot\sqrt{x+5}=6\)
\(\Leftrightarrow3\cdot\sqrt{x+5}=6\)
\(\Leftrightarrow\sqrt{x+5}=2\)
\(\Leftrightarrow x+5=2^2=4\)
\(\Leftrightarrow x=-1\left(N\right)\)
Tìm x, biết
a) 70 - (x - 3) = 45; b) 12 + (5 + x) = 20
c) 130 - (100 + x) = 25; d)175 + (30 - x) = 200
e) (x + 12) + 22 = 92; f) 95 - (x + 2) = 45
a) \(70-\left(x-3\right)=45\)
\(x-3=70-45\)
\(x-3=25\)
\(x=25+3\)
\(x=28\)
b) \(12+\left(5+x\right)=20\)
\(5+x=20-12\)
\(5+x=8\)
\(x=8-5\)
\(x=3\)
c) \(130-\left(100+x\right)=25\)
\(100+x=130-25\)
\(100+x=105\)
\(x=105-100\)
\(x=5\)
d) \(175+\left(30-x\right)=200\)
\(30-x=200-175\)
\(30-x=25\)
\(x=30-25\)
\(x=5\)
e) \(\left(x+12\right)+22=92\)
\(x+12=92-22\)
\(x+12=70\)
\(x=70-12\)
\(x=58\)
f) \(95-\left(x+2\right)=45\)
\(x+2=95-45\)
\(x+2=50\)
\(x=50-2\)
\(x=48\)
a)
70 - (x - 3) = 45
x - 3 = 70 - 45 = 25
x = 25 + 3 = 28
Vậy x = 28
b)
12 + (5 + x) = 20
5 + x = 20 - 12 = 8
x = 8 - 5 = 3
Vậy x = 3
c)
130 - (100 + x) = 25
100 + x = 130 - 25 = 115
x = 115 - 100 = 15
Vậy x = 15
d)
175 + (30 - x) = 200
30 - x = 200 - 175 = 25
x = 30 - 25 = 5
Vậy x = 5
e)
(x + 12) + 22 = 92
x + 12 = 92 - 22 = 70
x = 70 - 12 = 58
Vậy x = 58
f)
95 - (x + 2) = 45
x + 2 = 95 - 45 = 50
x = 50 - 2 = 48
Vậy x = 48
Tìm x, biết:
a, 70 - 5 ( x - 3 ) = 45
b, 10 + 2 x = 4 5 : 4 3
c, 60 - 3 x - 2 = 51
d, 4 x - 20 = 2 5 : 2 3
a, 70 - 5 ( x - 3 ) = 45
⇔ 5 . x - 3 = 70 - 45
⇔ 5 x - 3 = 35
⇔ x - 3 = 35 : 5 ⇔ x - 3 = 7
⇔ x = 10
b, 10 + 2 x = 4 5 : 4 3
⇔ 10 + 2 x = 4 2 ⇔ 10 + 2 x = 16
⇔ 2 x = 4 ⇔ x = 2
c, 60 - 3 x - 2 = 51
⇔ 3 x - 2 = 60 - 51
⇔ 3 x - 2 = 9
⇔ x - 2 = 3 ⇔ x = 5
d, 4 x - 20 = 2 5 : 2 3
⇔ 4 x - 20 = 2 2 ⇔ 4 x - 20 = 4
⇔ 4 x = 24 ⇔ x = 6
Tìm x ∈ N sao cho:
a)x ⋮ 15;x ⋮ 20 và 50
b)30⋮ x;45⋮x và x>10
c)9:(x+2)
d)(x+17):(x+3)
b: 30 chia hết cho x
45 chia hết cho x
Do đó: \(x\inƯC\left(30;45\right)=Ư\left(15\right)\)
mà x>10
nen x=15
c: \(\Leftrightarrow x+2\in\left\{1;-1;3;-3;9;-9\right\}\)
hay \(x\in\left\{-1;-3;1;-5;7;-11\right\}\)
d: =>x+3+14 chia hết cho x+3
=>\(x+3\in\left\{1;-1;2;-2;7;-7;14;-14\right\}\)
hay \(x\in\left\{-2;-4;-1;-5;4;-10;11;-17\right\}\)
Bài 1 : Tìm x biết :
x + 4/5.9 + 4/ 9.13 + 4/ 13 .15 + ... + 4/41.45 = -37/45
Bài 2 : x - 20/11.13 - 20/13.15 - ...-20/53.55= 3/11
Bài 3 : Tìm x biết
1/21 + 1/28 + 1/36 + ...+ 2/ x(x+1)=2/9
tìm x
a) 5.x+3.(10-x)+x=45
B) 5.(12-x)-20=30
a) 5x+3(10-x)+x=45
<=>5x+30-3x+x=45
<=>3x=15
<=>x=5
b)5(12-x)-20=30
<=>60-5x-20=30
<=>60-20-30=5x
<=>10=5x
<=>x=2
Tìm x
[45+(50-20)].x=103.15
\(\left[45+\left(5^0-10\right)\right]\cdot x=10^3\cdot15\)
\(\left(45+1-20\right)\cdot x=1000\cdot15\)
\(26\cdot x=15000\)
\(x=\frac{7500}{13}\)
Chúc em học tốt!!
[45+(50-20)].x =103.15
[45+(-20)].x =1000.15
25.x=15000
x=15000:25
x=600
\([45\left(5^0-20\right)].x=10^3.15\)
\(\left(45+1-20\right).x=1000.15\)
\(26.x=15000\)
\(x=\frac{7500}{13}\)
Vậy x =\(\frac{7500}{13}\)
tìm x,biết:
a) 2√2x-5√8x+7√18x=28
b)√4x-20+√x-5-1/3√9x-45=4
c)√\(x^2\) -4-√x-2=0
a: \(\Leftrightarrow2\sqrt{2x}-10\sqrt{2x}+21\sqrt{2x}=28\)
=>\(13\sqrt{2x}=28\)
=>căn 2x=28/13
=>2x=784/169
=>x=392/169
b: \(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)
=>2*căn x-5=4
=>căn x-5=2
=>x-5=4
=>x=9
c: =>\(\sqrt{x-2}\left(\sqrt{x+2}-1\right)=0\)
=>x-2=0 hoặc x+2=1
=>x=-1 hoặc x=2
1 tính bằng cách thuận tiện nhất
a, 25+35+76+65+22
b, 25x35+24x65
c , 78-23-25
2 tìm x
a , x-45=20 b , 45 - x=20
a, 25+35+76+65+22
=(65+35)+(76+22)+25
=100+100+25
=225
c , 78-23-25
=78-(23+25)
=78-48
=30
a , x-45=20
x=20+45
x=65
b , 45 - x=20
x =45-20
x= 25
Bài 2:
a: Ta có: x-45=20
nên x=65
b: Ta có: 45-x=20
nên x=25
2.tìm x
a)\(\sqrt{x^2-6x+9}\)
b)\(\sqrt{x^2-2x+1}\)
c)\(\sqrt{4x+12}-3\sqrt{x+3}+7\sqrt{9x+27}=20\)
d)\(\sqrt{4x+20}+3\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=6\)
a) \(\sqrt{x^2-6x+9}\)
\(=\sqrt{\left(x^2-2.x.3+3^2\right)}\)
\(=\sqrt{\left(x-3\right)^2}\) ≥0,∀x
⇒x∈\(R\)
b) \(\sqrt{x^2-2x+1}\)
\(=\sqrt{\left(x^2-2.x.1+1^2\right)}\)
\(=\sqrt{\left(x-1\right)^2}\) ≥0,∀x
⇒x∈\(R\)