Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
lê duy mạnh
Xem chi tiết
Kiệt Nguyễn
5 tháng 2 2020 lúc 22:29

Gọi AM cắt DE tại I 

Theo tính chất hình chữ nhật ADHE : \(\widehat{E_1}=\widehat{HAC}=\widehat{MBA};\widehat{A_1}=\widehat{D_1}=\widehat{AHE}=\widehat{MCA}\)

\(\Rightarrow\widehat{A_1}=\widehat{ACM}\Rightarrow\Delta ACM\)cân tại M \(\Rightarrow MA=MC\)(*)

Do \(\Delta AID\)vuông tại I suy ra 

\(\widehat{DAM}+\widehat{D_1}=90^0\Leftrightarrow\widehat{DAM}+\widehat{DAH}=90^0\left(1\right)\)

\(\widehat{ABM}+\widehat{DAH}=90^0\left(2\right)\)

Từ (1) và (2) suy ra \(\widehat{DAM}=\widehat{ABM}\)

\(\Rightarrow\Delta ABM\)cân tại M \(\Rightarrow MA=MB\)(**)

Từ (*);(**) suy ra MB=MC hay M là trung điểm BC . Do MF//AC suy ra 

\(\widehat{MFC}=\widehat{ACF}\)

Mà 

Khách vãng lai đã xóa
Kiệt Nguyễn
5 tháng 2 2020 lúc 22:31

\(\widehat{ACF}=\widehat{MCF}\Rightarrow\widehat{MFC}=\widehat{MCF}\Rightarrow\Delta MFC\)cân tại M suy ra MC=MF

Mà MB=MC suy ra \(\Delta BFC\) có  FM là trung tuyến \(FM=\frac{1}{2}BC\Rightarrow\)  \(\Delta BFC\)vuông tại F hay  \(BF\perp CF\left(đpcm\right)\)

Khách vãng lai đã xóa
Inequalities
5 tháng 2 2020 lúc 22:32

bấm nhầm gửi câu hỏi nha

Khách vãng lai đã xóa
Ziri Pấn Yamada Miko VIP
Xem chi tiết
Cô Hoàng Huyền
12 tháng 3 2018 lúc 11:20

a) Do ABC là tam giác cân tại A nên AH là đường cao hay đồng thời là đường phân giác.

Xét tam giác vuông AMH và tam giác vuông ANH có:

Cạnh AH chung

\(\widehat{MAH}=\widehat{NAH}\)

\(\Rightarrow\Delta AMH=\Delta ANH\)  (Cạnh huyền - góc nhọn)

\(\Rightarrow HM=HN.\)

b) Dễ dàng thấy ngay AC là đường trung trực của HF.

Khi đó thì AH = AF; CH = CF

Xét tam giác AHC và tam giác AFC có:

Cạnh AC chung

AH - AF

CH = CF

\(\Rightarrow\Delta AHC=\Delta AFC\left(c-c-c\right)\)

\(\Rightarrow\widehat{AFC}=\widehat{AHC}=90^o\Rightarrow AF\perp CF.\)

c) Ta thấy ngay \(\Delta HIN=\Delta FCN\left(g-c-g\right)\)

\(\Rightarrow IN=CN\)

Xét tam giác vuông INF và tam giác vuông CNH có:

HN = FN

IN = CN

\(\Rightarrow\Delta INF=\Delta CNH\)  (Hai cạnh góc vuông)

\(\Rightarrow\widehat{IFN}=\widehat{CHN}\)

Mà chúng lại ở vị trí so le trong nên IF // BC.

d) Chứng minh tương tự câu c, ta có IE // BC

Vậy thì qua I có hai tia IE và IF cùng song song với BC nên chúng trùng nhau.

Vậy I, E, F thẳng hàng.

ภ丶гєєรє❄
Xem chi tiết
Nguyễn Quốc Huy
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 4 2018 lúc 8:43

Yim Yim
Xem chi tiết
Le DuyHung
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 7 2023 lúc 0:20

a: ΔAHB vuông tại H có HE là đường cao

nên AH^2=AE*AB

b: ΔAHC vuông tại H có HF là đường cao

nên AH^2=AF*AC

=>AE*AB=AF*AC

=>AE/AC=AF/AB

Xét ΔAEF vuông tại A và ΔACB vuông tại A có

AE/AC=AF/AB

=>ΔAEF đồng dạng với ΔACB

 

Nguyễn Quốc Huy
Xem chi tiết
Nguyễn Quốc Huy
20 tháng 3 2019 lúc 20:20

ai giúp mk vs

Rosie
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 10 2021 lúc 21:16

b: Xét ΔAHB vuông tại H có HE là đường cao ứng với cạnh huyền AB

nên \(AE\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HF là đường cao ứng với cạnh huyền AC

nên \(AF\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)

Nguyễn Linh Anh
Xem chi tiết
Đặng Phương Thảo
13 tháng 7 2015 lúc 8:40

bạn đăng từng bài lên 1 đi

mik giải dần cho

phung thi hang
30 tháng 1 2017 lúc 7:15

dễ mà bn

Luu Kim Huyen
22 tháng 2 2017 lúc 11:43

Cho DABC vuông tại C . Trên cạnh AB lấy điểm D sao cho AD = AB. Kẻ qua D đường thẳng vuông góc với AB cắt BC tại E. AE cắt CD tại I.

a) Chứng minh AE là phân giác góc CAB

b) Chứng minh AD là trung trực của CD

c) So sánh CD và BC

d) M là trung điểm của BC, DM cắt BI tại G, CG cắt DB tại K. Chứng minh K là trung điểm của DB.