Cho tam giác ABC vuông tại A, đường cao AH. Trên tia đối của tia AB lấy điểm K sao cho góc AKC = 600. D và E lần lượt là hình chiếu của H trên AB, AC. Qua A kẻ đường thẳng vuông góc với DE cắt BC tại M (M thuộc BC). Kẻ tia Cx là tia phân giác của góc ACB, qua M kẻ đường thẳng song song với AC cắt Cx tại F. Chứng minh BF vuông góc CF.
Cho tam giacs ABC nội tiếp đường tròn tâm O đường kính BC.Kẻ AH vuông góc BC tại H.Gọi M,N lần lượt là hình chiếu của H trên AB,AC
a,CM AMHN là hình chữ nhật và AM.AB=AN.AC
b,CM tứ giác BMNC là tứ giác nội tiếp và AC.BM+AB.CN=AH.BC
c,Chứng minh đường thẳng đi qua A cắt HM tại E cắt tia đối NH tại F>Chứng minh BE song song CF
Cho tam giacs ABC nội tiếp đường tròn tâm O đường kính BC.Kẻ AH vuông góc BC tại H.Gọi M,N lần lượt là hình chiếu của H trên AB,AC
a,CM AMHN là hình chữ nhật và AM.AB=AN.AC
b,CM tứ giác BMNC là tứ giác nội tiếp và AC.BM+AB.CN=AH.BC
c,Chứng minh đường thẳng đi qua A cắt HM tại E cắt tia đối NH tại F>Chứng minh BE song song CF
AI GIÚP CÂU CÚI VỚI KHÓ QUÁ
Giúp tui câu 3
cho tam giác ABC nội tiếp đường tròn tâm O đường kính BC , kẻ AH vuông góc với BC ( H thuộc BC ) .Gọi M,N lần lượt là hình chiếu của H trên AB ,AC
1) CM : AC2=CH*CB
2 ) CM BCNM nội tiếp : AC*BM+AB*CM=AH*BC
3) đường thẳng qua A cắt HM tại E cắt tia đối NH tại F chứng minh BE//CF
Cho đường tròn (O). Các đường cao BE và CF của tam giác ABC cắt nhau tại H và cắt (O) lần lượt tại E' và F' (E' khác B và F' khác C).
a, Chứng minh tứ giác BCEF nội tiếp
b, Chứng minh EF//E'F'
c, Kẻ OI vuông góc với BC( I thuộc BC). Đường thẳng vuông góc với HI tại H cắt đường thẳng AB tại M và cắt đường thẳng AC tại N. Chứng minh tam giác IMN cân
Cho tam giác nhọn ABC (AB < AC), đường tròn tâm (O), đường kính BC cắt cạnh AB, AC lần lượt tại F và E, BE và CF cắt nhau tại H.
a) Chứng minh: AH vuông góc BC tại D và tứ giác CDHE nội tiếp.
b) Qua D vẽ đường thẳng song song CF cắt tia EF tại M. Chứng minh: tứ giác BMED nội tiếp và \(\widehat{EMB}=\widehat{EDC}\)
c) Chứng minh OF // BM.
cho tam giác ABC vuông tại A (AB<AC) kẻ AH vuông góc với BC gọi D,E lần lượt là hình chiếu của H trên AB và AC a) biết AB=6cm, HC=6,4cm.tính BC,AC b) chứng minh: DE^3=BC.BD.CE c) đường thẳng qua B vuông góc với BC cắt HD tại M. đường thẳng qua C vuông góc với BC cắt HE tại N.chứng minh: M,A,N thẳng hàng
Cho tam giác ABC vuông tại A (AB < AC), đường cao AH (H thuộc BC). Gọi M và N lần lượt là hình chiếu của H trên AB và AC.
Qua A kẻ đường thẳng vuông góc với MN cắt BC tại K . CM K là trung điểm của BC. (chỉ ý này thôi ạ)
--------------
(Các ý trước:
a) Giả sử HB = 3, 2 cm , HC = 7,2cm . Tính HA , AC và góc B ; góc C
b) Chứng minh: AM.AB = AN.AC và HB.HC = AM.MB + AN.NC
Cho tam giác ABC có ba góc nhọn (AB < AC). Đường tròn tâm O đường kính BC cắt cạnh AC cad AB lần lượt tại E và F. Gọi H là giao điểm của BE cà CF. AH cắt cạnh BC tại D.
a) Chứng minh các tứ giác BFEC, BFHD, CEHD nội tiếp đường tròn.
b) Qua O kẻ đường thẳng vuông góc với BC cắt DE và DF lần lượt tại G và I. Chứng minh BGCI là hình thoi
cho tam giác abc nhọn, không cân (ab< ac), các đường cao ad,be,cf cắt nhau tại trực tâm h . gọi m,i lần lượt là trung điểm của bc, ah. đường thẳng qua i vuông góc với am, cắt ef tại s. 1) chứng minh ie vuông góc với me. 2) chứng minh sa song song với bc. 3) gọi p,q lần lượt là giao điểm của si với be,cf.chứng minh i là trung điểm của pq.