Chứng minh rằng:
A=311+312+313+314+315+316 chia hết cho 13
chứng minh 315 + 314 + 313 chia hết cho 13
giúp mình với
\(3^{15}+3^{14}+3^{13}\)
\(=3^{13}\left(3^2+3+1\right)=3^{13}\cdot13⋮13\)
\(=3^{13}\left(3^2+3+1\right)=3^{13}\cdot13⋮13\)
\(3^{15}+3^{14}+3^{13}\)
\(=3^{13}\left(3^2+3+1\right)\)
\(=3^{13}\left(9+3+1\right)\)
\(=3^{13}.13\)⋮13
⇒\(3^{15}+3^{14}+3^{13}\)⋮13
Tình nhanh
19/13+14/6+1/9+4/6+7/13+17/9
315/316×313/314×316/315×317/314
Cần gấp, ai đúng em tick
\(\frac{19}{13}+\frac{14}{6}+\frac{1}{9}+\frac{4}{6}+\frac{7}{13}+\frac{17}{9}\)
\(=\left(\frac{19}{13}+\frac{7}{13}\right)+\left(\frac{14}{6}+\frac{4}{6}\right)+\left(\frac{1}{9}+\frac{17}{9}\right)\)
\(=\frac{26}{13}+\frac{18}{6}+\frac{18}{9}\)
\(=2+3+2\)
\(=7\)
\(\frac{315}{316}\times\frac{313}{314}\times\frac{316}{315}\times\frac{317}{314}\)
\(=\left(\frac{315}{316}\times\frac{316}{315}\right)\times\left(\frac{313}{314}\times\frac{317}{314}\right)\)
\(=1\times1,006339\)
\(=1,006339\)
#Chúc bạn học tốt !
#k mình nhé ?
315/316×313/314×316/315×317/314
Đơn giản như đang giỡn :
=315.313.316.317/315.314.316.317
=313/314
hok tốt k nhé bạn .
\(\frac{315}{316}\cdot\frac{313}{314}\cdot\frac{316}{315}\cdot\frac{317}{314}\)
= \(\frac{315\cdot313\cdot316\cdot317}{316\cdot314\cdot315\cdot314}\)
=\(\frac{1\cdot313\cdot1\cdot317}{1\cdot314\cdot1\cdot314}\)(Bước này là bước rút gọn)
= \(\frac{99221}{98596}\)
#Kiều
\(\frac{315}{316}.\frac{313}{314}.\frac{316}{315}.\frac{317}{314}\)\(=\frac{315.313.316.317}{316.314.315.314}\)
Sau khi rút gọn:
\(=\frac{313.317}{314.314}\)
3/7 + 4/5 + 4/7
3/2 x 4/5 x 2/3
4/6 + 7/13 + 17/9 + 19/13 + 1/9 + 14/6
315/316 x 316 /314 x 316/315 x 317/313
\(\frac{315}{316}\cdot\frac{316}{314}\cdot\frac{316}{315}\cdot\frac{317}{313}=\frac{315.316.316.317}{316.314.315.313}=\frac{1.1.316.317}{1.314.1.313}=\frac{100172}{98282}\)
Ta có : \(\frac{3}{2}\times\frac{4}{5}\times\frac{2}{3}\)
\(=\frac{3}{2}\times\frac{2}{3}\times\frac{4}{5}=1\times\frac{4}{5}\)
\(=\frac{4}{5}\)
Tính nhanh giá trị của biểu thức sau :
315/316 * 313/314 * 316/315 * 317/313
315/316*313/314*316/315*317/313
=315*313*316*317/316*314*315*313
=317/314
Tick cho mik nha
tìm đa thức dư trong phép chia đa thức f(x)=x^312-x^313+x^314-x^315+x^446 cho đa thức g(x)=x^2-1
\(f\left(x\right)=x^{312}-x^{313}+x^{314}-x^{315}+x^{446}\)
\(=\left(x^{312}-1\right)-\left(x^{313}-x\right)+\left(x^{314}-1\right)-\left(x^{315}-x\right)+\left(x^{446}-1\right)-2x+3\)
\(=\left[\left(x^2\right)^{156}-1\right]-x\left[\left(x^2\right)^{156}-1\right]+\left[\left(x^2\right)^{157}-1\right]-x\left[\left(x^2\right)^{157}-1\right]+\left[\left(x^2\right)^{223}-1\right]-2x+3\)
\(=\left(x^2-1\right)A_{\left(x\right)}-x\left(x^2-1\right)B_{\left(x\right)}+\left(x^2-1\right)C_{\left(x\right)}-x\left(x^2-1\right)D_{\left(x\right)}+\left(x^2-1\right)E_{\left(x\right)}-2x+3\)
Vậy số dư là -2x+3
Cho C=1+3+32+33+…+311.Chứng minh rằng:
a)C chia hết cho 15
b)C chia hết cho 40
\(C=1+3+3^2+3^3+...+3^{11}\\ a,C=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+\left(3^6+3^7+3^8\right)+\left(3^9+3^{10}+3^{11}\right)\\ =13+3^3.\left(1+3+3^2\right)+3^6.\left(1+3+3^2\right)+3^9.\left(1+3+3^2\right)\\ =13+3^3.13+3^6.13+3^9.13\\ =13.\left(1+3^3+3^6+3^9\right)⋮13\)
Ý a phải chia hết cho 13 chứ em?
b: C=(1+3+3^2+3^3)+...+3^8(1+3+3^2+3^3)
=40(1+...+3^8) chia hết cho 40
a: C ko chia hết cho 15 nha bạn
\(b,C=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+\left(3^8+3^9+3^{10}+3^{11}\right)\\ =40+3^4.\left(1+3+3^2+3^3\right)+3^8.\left(1+3+3^2+3^3\right)\\ =40.\left(1+3^4+3^8\right)⋮40\)
cho A = 1 + 3 + 32 + 33 + ... + 311
a ) chứng minh A chia hết cho 13
b) chứng minh A chia hết cho 40
A=1+3+3^2+3^3+...+3^98+3^99+3^100
A=(1+3+ 3^2)+(3^3+3^4+3^5)+...+(3^98+3^99+3^100)
A=(1+3+3^2)+3^3x(1+3+3^2)+...+3^98x(1+3+3^2)
A=13x3^3x13+...+3^98x13
=> 13x(1+3+3^3+...+3^98)chia hết cho 13
Vậy A chia hết cho 13
Chứng minh rằng:A=4a+3b chia hết cho 13 thì B=7a+2b chia hết cho 13
Giup mình với!!!
cho C=5+52+53+54+...+520 chứng minh rằng:
a)C chia hết cho 5 b) C chia hết cho 6 c) C chia hết cho 13
\(a,C=5+5^2+5^3+5^4+\cdot\cdot\cdot+5^{20}\)
\(=5\left(1+5+5^2+\cdot\cdot\cdot+5^{19}\right)\)
Ta thấy: \(5\left(1+5+5^2+\cdot\cdot\cdot+5^{19}\right)⋮5\)
nên \(C⋮5\)
\(b,C=5+5^2+5^3+5^4\cdot\cdot\cdot+5^{20}\)
\(=\left(5+5^2\right)+\left(5^3+5^4\right)+\cdot\cdot\cdot+\left(5^{19}+5^{20}\right)\)
\(=5\left(1+5\right)+5^3\left(1+5\right)+\cdot\cdot\cdot+5^{19}\left(1+5\right)\)
\(=5\cdot6+5^3\cdot6+\cdot\cdot\cdot+5^{19}\cdot6\)
\(=6\cdot\left(5+5^3+\cdot\cdot\cdot+5^{19}\right)\)
Ta thấy: \(6\cdot\left(5+5^3+\cdot\cdot\cdot+5^{19}\right)⋮6\)
nên \(C⋮6\)
\(c,C=5+5^2+5^3+5^4+\cdot\cdot\cdot+5^{20}\)
\(=\left(5+5^3\right)+\left(5^2+5^4\right)+\cdot\cdot\cdot+\left(5^{17}+5^{19}\right)+\left(5^{18}+5^{20}\right)\)
\(=5\left(1+5^2\right)+5^2\left(1+5^2\right)+\cdot\cdot\cdot+5^{17}\cdot\left(1+5^2\right)+5^{18}\left(1+5^2\right)\)
\(=5\cdot26+5^2\cdot26+\cdot\cdot\cdot+5^{17}\cdot26+5^{18}\cdot26\)
\(=26\cdot\left(5+5^2+\cdot\cdot\cdot+5^{17}+5^{18}\right)\)
Ta thấy: \(26\cdot\left(5+5^2+\cdot\cdot\cdot+5^{17}+5^{18}\right)⋮13\)
nên \(C⋮13\)
#\(Toru\)