Cho tam giác ABC có AC = 2AB. M là trung điểm của AC, D là trung điểm của AM. Trên tia đối của tia BD lấy điểm E sao cho BE = 2BD
a) Cm: ME = MC
b) BM vuông góc với EC
Cho tam giác ABC có AC = 2AB. M là trung điểm của AC, D là trung điểm của AM. Trên tia đối của tia BD lấy điểm E sao cho BE = 2BD
a) Cm: ME = MC
b) BM vuông góc với EC
Bài 1:
Cho góc nhọn xAy, trên tia Ax lấy điểm B, trên tia Ay lấy điểm C sao cho AB = AC. Gọi M là trung điểm của BC và E là trung điểm của AC, trên tia đối của tia EM lấy điểm H sao cho EH = EM
a) Chứng minh ( CM ) : tam giác ABM = tam giác ACM
b) CM : AM vuông góc BC
c) CM : tam giác AEH = tam giác CEM
d) Gọi D là trung điểm của AB. Từ B vẽ đường thẳng song song với AM, đường thẳng này cắt tia MD tại K. CM : ba điểm H, A, K thẳng hàng
Bài 2:
Cho tam giác ABC có góc B < 90 độ. Trên nửa mặt phẳng bờ BC chứa điểm A vẽ tia Bx khác BC, trên tia Bx lấy điểm D sao cho BD = BC. Trên nửa mặt phẳng bờ AB chứa điểm C vẽ tia By vuông góc với BA, trên tia By lấy E sao cho BE = BA
a) CMR : DA = EC
b) DA vuông góc EC
Bài 3:
Cho tam giác ABC vuông tại B và AC = 2AB. Kẻ phân giác AE ( E thuộc BC ) của góc A
a) CM : EA = EC
b) Tính góc A và góc C của tam giác ABC
GIÚP TỚ VỚI Ạ. TỚ ĐANG CẦN!!
Bài 1:
a) Xét tam giác ABM và tam giác ACM : AB=AC,AM chung ,BM=MC(vì M là trung điểm của BC gt)
\(\Rightarrow\Delta ABM=\Delta ACM\left(c.c.c\right)\)
b) Tam giác ABC có AB=AC nên tam giác ABC cân tại A
=> đường trung tuyến AM đồng thời là đường cao
Vậy AM vuông góc BC
c) Xét tam giác AEH và tam giác CEM : AE=EC,EH=EM,\(\widehat{AEH}=\widehat{CEM}\)(2 góc đối đỉnh)
\(\Rightarrow\Delta AEH=\Delta CEM\left(c.gc\right)\)
d) Ta có KB//AM(vì vuông góc với BM
\(\Rightarrow\widehat{KBD}=\widehat{DAM}\)(2 góc ở vị trí so le trong)
Xét tam giác KDB và MDA (2 góc đối đỉnh)
\(\Rightarrow\Delta KDB=\Delta DAM\left(g.c.g\right)\)
\(\Rightarrow KD=DM\left(1\right)\)
Tam giác ABM vuông tại M có trung tuyến MD
Nên : MD=BD=AD(2)
Từ (1) và (2) ta có : KD=DM=DB=AD
Tam giác KAM có trung tuyến ứng với cạnh KM là \(AD=\frac{AM}{2}\)
Nên : Tam giác KAM vuông tại A
Tương tự : Tam giác MAH vuông tại A
Ta có: Qua1 điểm A thuộc AM có 2 đường KA và AH cùng vuông góc với AM
Nên : K,A,H thẳng thàng
Bài 2 :
a) Ta có tam giác DAB=tam giác CEB(c.g.c)
Do : DA=CB(gt)
BE=BA(gt)
\(\widehat{DBA}=\widehat{CBE}\)(Cùng phụ \(\widehat{ABC}\))
=> DA=EC
b) Do tam giác DAB=tam giác CEB(ở câu a)
=> \(\widehat{BDA}=\widehat{BCE}\Rightarrow\widehat{BDA}+\widehat{BCD}=\widehat{BCE}+\widehat{BCD}\)
Mà : \(\widehat{BDA}+\widehat{BCD}=90^0\)( Do Bx vuông góc BC)
=> \(\widehat{BCE}+\widehat{BCD}=90^0\)
=> DA vuông góc với EC
Cho tam giác ABC vuông tại A Trên cạnh BC lấy điểm E sao cho BE=BA qua E kẻ đường vuông góc với BC cắt cạnh AC tại D trên tia đối của tia AB lấy điểm F sao cho AF=EC c/m a) BD là tia phân giác của góc B b)BD là đường trung trực của AE c) 3 điểm EDF thẳng hàng
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
BA=BE
=>ΔBAD=ΔBED
=>góc ABD=góc EBD
=>BD là phân giác của góc ABE
b: BA=BE
DA=DE
=>BD là trung trực của AE
b1: cho tam giác ABC cân tại A. Trên tia đối của tia BA lấy điểm D, trên tia đối của tia CA lấy điểm E sao cho BD=CE. Vẽ DH và EK cùng vuông góc với đường thẳng BC. Chứng minh:
a, HB=CK
b, góc AHB = góc AKC
c, HK // DE
D, gọi I là giao điểm DK và EH. CM: AI vuông góc với DE
b2: Cho tam giác ABC vuông tại B, vẽ trung tuyến AM, trên tia đối của tia MA lấy điểm E sao cho ME=MA. CM:
a, tam giác ABM= tam giác ECM
b, EC vuông góc với BC
c, AC>CE
D, BE//AC
ssssssssssssssssssssssssssssssssssssssssssssssssssssssaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
cho tam giác abc m là trung điểm của ac biết bm=ac. Gọi d là điểm đối xứng với b qua a. Trên tia đối của cm lấy e sao cho cm=ce. C/m: dm vuông góc với be
Gọi I là trung điểm của BM \(\Rightarrow IM=\frac{1}{2}BM=\frac{1}{2}AC\)(vì BM = AC)
\(\Delta AIC\)có IM là đường trung tuyến ứng với cạnh AC và IM = 1/2 AC
\(\Rightarrow\Delta AIC\)vuông tại I \(\Rightarrow AI\perp IC\) (1)
AI là đường trung bình của \(\Delta DBM\Rightarrow AI//DM\) (2)
IC là đường trung bình của \(\Delta BME\Rightarrow IC//BE\) (3)
Từ (1), (2) và (3) \(\Rightarrow DM\perp BE.\)
Chúc bạn học tốt.
Câu 1. Cho tam giác ABC có góc B =90 độ , vẽ trung tuyến AM . Trên tia đối của tia AM lấy điểm E sao cho ME=AM . C/m rằng :
a. Tam giác ABM=tam giác ECM
b. AC>CE
c. Góc BAM > góc MAC
Câu 2. Cho tam giác ABC cân ở A có AB=AC=17cm ; BC=16cm .Kẻ trung tuyến AM .C/m rằng :
a.AM vuông góc BC
b.Tính độ dài AM
Câu 3. Cho tam giác nhọn nhọn ABC , hai đường cao BM,CN . Trên tia đối của tia BM lấy điểm D sao cho BD =AC, trên tia đối của tia CN lấy điểm E sao cho CE=AB . C/m :
a. góc ACE = góc ABD
b. Tam giác ACE = tam giác DBA
c. Tam giác AED là tam giác vuông cân
Cho tam giác ABC vuông tại A (AC > AB).Trên BC lấy điểm D sao cho BD=BA.Vẽ tia phân giác góc B cắt AC tại I
a) CM:tam giác BAI=tam giác BDI
b)Trên tia đối của tia AB lấy E sao cho BE=BC,M là trung điểm.Chứng minh BM vuông góc EC
c)CM: B,I,M thẳng hàng
cho tam giác ABC có góc A=90 độ;AB<AC. gọi M là trung điểm của BC trên tia đối của tia MA lấy E sao cho MA=ME.
a) cm AB=EC VÀ AB // EC
b) cm tam giác ACE vuông tại C
c)cm tam giác ABC và TAM GIÁC CEA
D) CM AM=1/2 BC
E) CM AC=BE VÀ AC // BC
F)TRÊN BE lấy K, trên AClấy H sao cho BK=CH. CM 3 ĐIỂM K,M,H THẲNG HÀNG
a: Xét ΔMAB và ΔMEC có
MA=ME
\(\widehat{AMB}=\widehat{EMC}\)(hai góc đối đỉnh)
MB=MC
Do đó: ΔMAB=ΔMEC
=>AB=EC
Ta có: ΔMAB=ΔMEC
=>\(\widehat{MAB}=\widehat{MEC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//CE
b: Ta có: AB//CE
AB\(\perp\)AC
Do đó: CE\(\perp\)CA
=>ΔCAE vuông tại C
c: Xét ΔABC vuông tại A và ΔCEA vuông tại C có
CA chung
AB=CE
Do đó: ΔABC=ΔCEA
d: ta có: ΔABC=ΔCEA
=>BC=EA
mà \(AM=\dfrac{1}{2}EA\)
nên \(AM=\dfrac{1}{2}BC\)
e: Xét ΔMAC và ΔMEB có
MA=ME
\(\widehat{AMC}=\widehat{EMB}\)(hai góc đối đỉnh)
MC=MB
Do đó: ΔMAC=ΔMEB
=>\(\widehat{MAC}=\widehat{MEB}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AC//BE
f: Xét ΔMHC và ΔMKB có
MB=MC
\(\widehat{MBK}=\widehat{MCH}\)
BK=CH
Do đó: ΔMHC=ΔMKB
=>\(\widehat{HMC}=\widehat{KMB}\)
mà \(\widehat{KMB}+\widehat{KMC}=180^0\)(hai góc kề bù)
nên \(\widehat{HMC}+\widehat{KMC}=180^0\)
=>K,M,H thẳng hàng
a) Ta có M là trung điểm của BC, vậy BM = MC. Vì MA = ME, nên ta có MA = ME = MC. Do đó, tam giác MEC là tam giác đều.
Vì BM = MC và tam giác MEC là tam giác đều, nên ta có AB = EC và AB // EC.
b) Vì tam giác ABC là tam giác vuông tại A, nên góc BAC = 90 độ.
Vì AB // EC, nên góc BAC = góc ECA.
Vậy tam giác ACE cũng là tam giác vuông tại C.
c) Tam giác ABC và tam giác CEA có cạnh chung AC và góc AEC = góc BAC = 90 độ (vì tam giác ABC là tam giác vuông tại A).
Vậy theo trường hợp góc - cạnh - góc, ta có tam giác ABC và tam giác CEA là hai tam giác đồng dạng.
d) Ta đã biết M là trung điểm của BC, vậy BM = MC.
Vì MA = ME, nên MA = MC/2.
Do đó, AM = 1/2 BC.
e) Ta đã biết AB = EC và AB // EC.
Vì MA = ME, nên MA = MC.
Vậy theo trường hợp cạnh - góc - cạnh, ta có tam giác MAC và tam giác MEC là hai tam giác đồng dạng.
Vậy AC = BE và AC // BC.
f) Trên BE lấy K, trên AC lấy H sao cho BK = CH.
Vì M là trung điểm của BC, nên MK = MC/2.
Vì tam giác MEC là tam giác đều, nên góc MCE = 60 độ.
Vậy góc MCK = 60 độ.
Vì BK = CH, nên góc BKC = góc CHB.
Vậy góc BKC = góc CHB = 60 độ.
Vậy tam giác BKC và tam giác CHB là hai tam giác đều.
Vậy 3 điểm K, M, H thẳng hàng.
cho tam giác ABC cân tại A, có góc A 90 độ kẻ AM vuông góc với BC a) CM M là trung điểm của BC b) trên tia đối của tia MA lấy điểm E sao cho ME = MB . CMR BE vuông góc với EC c) qua điểm A vẽ dường thẳng vuông góc với tia EC, đường thẳng đó cắt EC tại I . So sánh EI và AC d) qua A vẽ đường thẳng song song với EI cắt EB tại H. CM HI song song với BC GIÚP MÌNH BÀI NÀY VÀ VẼ HÌNH VỚI , MÌNH NGHĨ MÃI KHÔNG RA MONG CÁC BẠN GÚP
a: Xét ΔAMB vuông tại M và ΔAMC vuông tại M có
AB=AC
AM chung
Do đó: ΔAMB=ΔAMC
=>MB=MC
=>M là trung điểm của BC
b: Ta có: ME=MB
\(MB=\dfrac{BC}{2}\)(M là trung điểm của BC)
Do đó: \(EM=\dfrac{1}{2}BC\)
Xét ΔEBC có
EM là đường trung tuyến
\(EM=\dfrac{1}{2}BC\)
Do đó: ΔEBC vuông tại E
=>BE\(\perp\)EC