Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Minh Quang Nguyễn
Xem chi tiết
Oanh
Xem chi tiết
Phan Hải Đăng
Xem chi tiết
Phan Hải Đăng
25 tháng 1 2021 lúc 22:05

I là trung điểm BC nha

 

Lê Tài Bảo Châu
Xem chi tiết
Điền Nguyễn Vy Anh
Xem chi tiết
Nguyễn Ngọc Trâm Anh
11 tháng 2 2020 lúc 10:34

b, Cho BH = 8cm, AH = 10cm. Tính AH này là sao , biết AH mà còn bắt tính AH

Khách vãng lai đã xóa
nguyen van duy
Xem chi tiết
Điền Nguyễn Vy Anh
Xem chi tiết
Nguyễn Phương Uyên
4 tháng 2 2020 lúc 16:27

C B M F N A I E O K T

b, kẻ AO // BC

góc OAK so le trong KFB 

=> góc OAK = góc KFB (tc)

xét tam giác AOK và tam giác BMK có : AK = KM (do ...)

góc AKO = góc MBK (đối đỉnh)

=> tam giác AOK = tam giác BMK (g-c-g)= 

=> AO = MB (đn)

có AO // BC mà góc EOA đồng vị EMC 

=> góc EOA = góc EMC (tc)    (1)

gọi EF cắt tia phân giác của góc BCA tại T 

EF _|_ CT (gt)

=> tam giác ETC vuông tại T và tam giác CTF vuông tại T 

=> góc CET = 90 - góc ECT và góc TMC = 90 - góc TCM 

có có TCM = góc ECT do CT là phân giác của góc ACB (gt)

=> góc CET = góc TMC   và (1)

=> góc  AEO = góc AOE 

=> tam giác AEO cân tại A (tc)

=> AE = AO mà AO = BM 

=> AE = BM

Khách vãng lai đã xóa
Nguyễn Phương Uyên
4 tháng 2 2020 lúc 16:05

a, MB = MN (gt)

M nằm giữa N và B

=> M là trung điểm của NP (đn)

NI // AB (gt); xét tam giác ANB 

=> I là trung điểm của AN (đl)

b, 

Khách vãng lai đã xóa
Điền Nguyễn Vy Anh
4 tháng 2 2020 lúc 16:33

câu a là sao vậy bn???

Khách vãng lai đã xóa
nguyên trung hiêu
Xem chi tiết
Nguyễn Phương Uyên
12 tháng 3 2020 lúc 13:35

A B C G D E t z m n P Q

a, kẻ DC

xét tam giác BDC và tam giác ECD có : DC chung

BD = CE (Gt)

^BDC = ^CDE (slt; BD // CE)

=> tam giác BDC = tam giác ECD (c-g-c)

=> BC = DE (1)

    và ^BCD = ^CDE (đn) mà 2 góc này slt

=> DE // BC 

gọi En cắt BC tại P => ^DEP = ^BPG (đồng vị)

có ^BPG = ^ACB (đồng vị) do En // AC (Gt)

=> ^DEG = ^BCA              (2)

gọi Dm cắt BC tại Q; DE // BC (cmt)

=> ^EDG = ^CQG (đồng vị)

^GQP =  ^ABC (đồng vị) Dm // AB (Gt)

=> ^EDG = ^ABC  (3)

(1)(2)(3) => tam giác ABC = tam giác GDE (c-g-c)

b, kẻ AE 

tam giác ABC = tam giác GDE (Câu a) => GE = AC (đn)

xét tam giác AGE và tam giác ECA có : AE chung

^GEA = ^EAC (slt) GE // AC (gT)

=> tam giác AGE = tam giác ECA (c-g-c)

=> ^GAE = ^AEC mà 2 góc này slt

=> AG // CE (đl)

Khách vãng lai đã xóa
Đăng
Xem chi tiết