Tim GTNN
C=x^2 - 7x + 10
tìm GTNN
c) D = x2-x+\(\dfrac{1}{2}\)
d: Ta có: \(D=x^2-x+\dfrac{1}{2}\)
\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\ge\dfrac{1}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)
D= (x^2 -2x1/2 +1/4) +1/4
=(x-1/2)^2 +1/4
MinD=1/4 khi x=1/2
x^2+7x+10=0 tim x
Ta có:
x2 + 7x + 10 = 0
<=> x^2 + 5x + 2x + 10 = 0
<=> x(x + 5) + 2(x + 5) = 0
<=> (x+2)(x+5) = 0
<=> x+2=0 hoặc x+5=0
<=> x= -2 hoặc x= -5
Vậy x = -2; -5.
\(x^2+7x+10=0\)
\(\Leftrightarrow\left(x^2+5x\right)+\left(2x+10\right)=0\)
\(\Leftrightarrow x\left(x+5\right)+2\left(x+5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(x+2\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x+5=0\\x+2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-5\\x=-2\end{cases}}}\)
tim x biet : x^2+7x+10=0
x^2+7x+10=0
x(x+7)=-10
=>x>0 x<0
x+7<0 x+7<0
Mà x+7>x
=>x<0 =>x<0
x+7>0 x>-7
=>x thuộc -1;-2;-3;-4;-5;-6
\(x^2+7x+10=0\)
\(x^2+2x+5x+10=0\)
\(x\left(x+2\right)+5\left(x+2\right)=0\)
\(\left(x+2\right)\left(x+5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+2=0\\x+5=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-2\\x=-5\end{cases}}\)
Tim x
|x+1|+|x+2|+...+|x+10|=7x
|x+1|+|x+2|+....+|x+10|=7x
= | 10x | + (1+2+3....+10)=7x
=> | 10x | + 55 =7x
=> 55 = -3x
=> x= 55 : (-3)=-18,333..
hình như đề sai
Vì |x+1| ≥ 0; |x+2|≥0 ;...; |x+10| ≥ 0 => |x+1|+|x+2|+...+|x+10| ≥ 0 => 7x ≥ 0 => x ≥ 0
=>x+1+x+2+...+x+10=7x
=>10x+55 = 7x
=>10x-7x=-55
=>3x=-55
=>x=-55/3
C=(x-2)(x-5)(x^2-7x-10)
tim GTNN
\(C=\left(x-2\right)\left(x-5\right)\left(x^2-7x-10\right)=\left(x^2-7x+10\right)\left(x^2-7x-10\right)\)
Đặt \(x^2-7x=t\),khi đó:
\(C=\left(t+10\right).\left(t-10\right)=t^2-10^2=t^2-100\)
Vì \(t^2\ge0=>t^2-100\ge-100\) (với mọi t)
Dấu "=" xảy ra\(< =>t=0< =>x^2-7x=0< =>x\left(x-7\right)=0< =>\orbr{\begin{cases}x=0\\x=7\end{cases}}\)
Vậy minC=-100 khi x=0 hoặc x=7
tim x biết
3x+4=0
2x*(x-1)-(1+2x)=-34
X^2+9x-10=0
(7x-1)*(2+5x)=0
\(3x+4=0\Leftrightarrow x=-\dfrac{4}{3}\\ 2x\left(x-1\right)-\left(1+2x\right)=-34\\ \Leftrightarrow2x^2-2x-1-2x=-34\\ \Leftrightarrow2x^2-4x+33=0\\ \Leftrightarrow2\left(x^2-2x+1\right)+30=0\\ \Leftrightarrow2\left(x-1\right)^2+30=0\\ \Leftrightarrow x\in\varnothing\left[2\left(x-1\right)^2+30\ge30>0\right]\\ x^2+9x-10=0\\ \Leftrightarrow x^2-x+10x-10=0\\ \Leftrightarrow\left(x-1\right)\left(x+10\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-10\end{matrix}\right.\\ \left(7x-1\right)\left(2+5x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}7x-1=0\\2+5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{7}\\x=-\dfrac{2}{5}\end{matrix}\right.\)
tim x: a.4/(x^2+2x+1)+3/(x^2+2x+3)=3/2
b.4x/(x^2+4x+5)+7x/(x^2-4x+5)=39/10
a) Đặt x^2+2x+2=t
\(\frac{4}{t-1}+\frac{3}{t+1}=\frac{3}{2}\Leftrightarrow\frac{4t+4+3t-3}{t^2-1}=\frac{7t+1}{t^2-1}=\frac{3}{2}\)
\(\Leftrightarrow14t+2=3t^2-3\Leftrightarrow3t^2-14t-5=3t\left(t-5\right)+t-5=0\)\(\Leftrightarrow\left(t-5\right)\left(3t+1\right)=0\Rightarrow\left[\begin{matrix}t=5\\t=-\frac{1}{3}\left(loai\right)\end{matrix}\right.\)
Với t=5 ta có (x+1)^2=4\(\Rightarrow\left[\begin{matrix}x+1=2\\x+1=-2\end{matrix}\right.\Rightarrow\left\{\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
Tim GTNN cua cac bieu thuc sau
A = x2 + 3x + 7
B = ( x - 2 ) . ( x - 5 ) . ( x2 - 7x - 10 )
B = (x-2)(x-5)(x2-7x-10)
=(x2-7x+10)(x2-7x-10)
=(x2-7x)2-102
=(x2-7x)2-100
=>GTNN của B là 100 <=>x2-7x=0
x(x-7)=0
=>x=0 hoặc x=7
Vậy GTNN của B là 100 khi x=0 hoặc x=7
A=x^2+2x.3/2+3/2^2+11/2
=(x+3/2)^2+11/2>=11/2
hình như linh chi làm sai r
tim so nguyen x,biet;
a,7x-18=3
b,19-7x=-16
c,2(x+1)-4=5x+7
d,2(x+1)-5=5x+7
e,10=10+9+8+7+.....+x
trong đó vế phải là tổng các số nguyên liên tiếp viết theo thứ tự giảm dần