Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Chirikatoji
Xem chi tiết
Không Tên
Xem chi tiết
Đặng Tiến
27 tháng 7 2016 lúc 20:06

a) \(a^3-a=a\left(a^2-1\right)=a\left(a-1\right)\left(a+1\right)\)

Vì \(n;n+1;n-1\)là 3 số nguyên liên tiếp chia hết cho 6.

\(\Rightarrow a\left(a+1\right)\left(a-1\right)\)chia hết cho 6

Hay \(a^3-a\)chia hết cho 6 (với mọi \(a\in Z\))

b) \(ab.\left(a^2-b^2\right)\)

Nếu a hoặc b chia hết cho 6 \(\Rightarrow ab.\left(a^2-b^2\right)\)chia hết cho 6

Nếu  a và b không chia hết cho 6 mà \(a^2\)chia 6 dư 1(2;3;4;5....) và \(b^2\)chia 6 dư 1(2;3;4;5...) 

\(\Rightarrow a^2-b^2\)chia 6 dư 1 (2;3;4;5...)  - 1 (2;3;4;5...) = 0

thì \(ab.\left(a^2-b^2\right)\)chia hết cho 6.

Thu Hoàng
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 5 2022 lúc 20:53

a: \(a^3-a=a\left(a^2-1\right)=a\left(a-1\right)\left(a+1\right)\)

Vì a;a-1;a+1 là ba số nguyên liên tiếp

nên \(a\left(a-1\right)\left(a+1\right)⋮3!\)

hay \(a^3-a⋮6\)

b: \(ab\left(a^2-b^2\right)=a^3b-ab^3\)

\(=a^3b-ab+ab-ab^3\)

\(=b\left(a^3-a\right)+a\left(b-b^3\right)\)

Vì \(a^3-a⋮6\)

và \(b-b^3=-\left(b^3-b\right)⋮6\)

nên \(ab\left(a^2-b^2\right)⋮6\)

Anh Nguyễn Việt
Xem chi tiết
Hà Chí Dương
27 tháng 3 2017 lúc 12:43

Tk mình đi mọi người mình bị âm nè!

Ai tk mình mình tk lại cho!

pham thuy trang
Xem chi tiết
Nhok Silver Bullet
14 tháng 8 2015 lúc 7:28

a) Ta có: m^3-m = m(m^2-1^2) = m.(m+1)(m-1) là tích của 3 số nguyên liên tiếp

 => m(m+1)(m-1) chia hết cho 3 và 2

Mà (3,2) = 1

=> m(m+1)(m-1) chia hết cho 6

=> m^3 - m  chia hết cho 6  V m thuộc Z

b) Ta có: (2n-1)-2n+1 = 2n-1-2n+1 = 0-1+1 = 0 luôn chia hết cho 8

=> (2n-1)-2n+1 luôn chia hết cho 8 V n thuộc Z

Tick nha pham thuy trang

 

Hoàng Anh Tuấn
14 tháng 8 2015 lúc 6:44

a, m3 - m = m( m2 - 12) = m(m - 1 ) ( m + 1) => 3 số nguyên liên tiếp : hết cho 6

mk chỉ biết có thế thôi

Hoàng Anh Tuấn
14 tháng 8 2015 lúc 6:48

công thanh sai rồi số nguyên chứ đâu phải số tự nhiên

chi nguyen
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 7 2023 lúc 20:34

a: a^3-a=a(a^2-1)

=a(a-1)(a+1)

Vì a;a-1;a+1 là ba số liên tiếp

nên a(a-1)(a+1) chia hết cho 3!=6

=>a^3-a chia hết cho 6

Bối Vy Vy
Xem chi tiết
Quỳnh Chi 2007
10 tháng 2 2019 lúc 8:27

Vì a-b chia hết cho 6 

nên (a-bchia hết cho 6 

=>> a+5a chia hết cho 6

Nguyễn Nhật Minh
10 tháng 2 2019 lúc 9:32

Vì a-b chia hết cho 6 nên 5(a-b)=5a-5b chia hết cho 6.

Mà 6b chia hết cho 6 với mọi số nguyên b.

Do vậy 5a-5b-6b chia hết cho 6 => 5a - 11b chia hết cho 6 (đpcm).

TRÂN LÊ khánh
Xem chi tiết
Yukru
20 tháng 7 2018 lúc 9:11

a) \(\left(n+6\right)^2-\left(n-6\right)^2\)

\(=\left[\left(n+6\right)-\left(n-6\right)\right]\left[\left(n+6\right)+\left(n-6\right)\right]\)

\(=\left(n+6-n+6\right)\left(n+6+n-6\right)\)

\(=12.2n\)

\(=24n\)

Vì 24n chia hết cho 24 với mọi n

=> (n + 6)2 - (n - 6)2 chia hết cho 24 với mọi n thuộc Z (Đpcm)

b) P/s: Bài này cậu thiếu điều kiện n lẻ nên mình thêm vào mới giải được nha.

\(n^2+4n+3\)

\(=n^2+n+3n+3\)

\(=n\left(n+1\right)+3\left(n+1\right)\)

\(=\left(n+3\right)\left(n+1\right)\)

Vì n là số lẻ nên n = 2k + 1 ( k thuộc Z )

Thay n = 2k + 1 vào ta được

\(\left(n+3\right)\left(n+1\right)\)

\(=\left(2k+1+3\right)\left(2k+1+1\right)\)

\(=\left(2k+4\right)\left(2k+2\right)\)

\(=2\left(k+2\right)2\left(k+1\right)\)

\(=4\left(k+2\right)\left(k+1\right)\)

Vì (k + 2)(k + 1) là tích của hai số liên tiếp

=> (k + 2)(k + 1) chia hết cho 2

=> 4(k + 2)(k + 1) chia hết cho 8

=> n2 + 4n + 3 chia hết cho 8 với mọi số nguyên n lẻ ( Đpcm )

c) \(\left(n+3\right)^2-\left(n-1\right)^2\)

\(=\left[\left(n+3\right)-\left(n-1\right)\right]\left[\left(n+3\right)+\left(n-1\right)\right]\)

\(=\left(n+3-n+1\right)\left(n+3+n-1\right)\)

\(=4\left(2n+2\right)\)

\(=4.2\left(n+1\right)\)

\(=8\left(n+1\right)\)

Vì 8(n + 1) chia hết cho 8 với mọi n

=> (n + 3)2 - (n - 1)2 chia hết cho 8 với mọi n ( Đpcm )

Trần T Huyền Anh
Xem chi tiết
Nguyễn Như Nam
23 tháng 10 2016 lúc 13:49

Ta có: \(a^3b-ab^3=a^3b-ab-ab^3+ab=ab\left(a^2-1\right)-ab\left(b^2-1\right)\)

\(=b\left(a-1\right)a\left(a+1\right)-a\left(b-1\right)b\left(1+1\right)\)

Do tích của 3 số tự nhiên liên tiếp thì chia hết cho 6

=> \(b\left(a-1\right)a\left(a+1\right);a\left(b-1\right)b\left(b+1\right)⋮6\Rightarrow a^3b-ab^3⋮6\)