Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Hữu Hoàng Hải Anh

 chứng minh rằng a^3 + 5a chia hết cho 6 với mọi a thuộc Z

Nguyễn Quang Tùng
16 tháng 12 2016 lúc 17:34

a^3 + 5a = a^3 - a + 6a

               = a( a^2 - 1) + 6a 

               = a( a-1) ( a+1) + 6a 

nhận xét a,( a-1),(a+1) là 3 số nguyên liên tiếp vì a thuộc Z 

nên trong 3 số có 1 số chia hết cho 3 và ít nhất 1 số chia hết cho 2

mà 2 và 3 nguyên tố cung nhau nên a(a-1)(a+1) chia hết cho 2 x 3 hay chia hết cho 6 

vậy a^3 -a chia hết cho 6 mà 6a chia hết cho 6

nên a^3 -a + 6a chia hết cho 6

hay a^3 + 5a chia hết cho 6 ( đpcm)

Steolla
2 tháng 9 2017 lúc 14:24

a^3 + 5a = a^3 - a + 6a

               = a( a^2 - 1) + 6a 

               = a( a-1) ( a+1) + 6a 

nhận xét a,( a-1),(a+1) là 3 số nguyên liên tiếp vì a thuộc Z 

nên trong 3 số có 1 số chia hết cho 3 và ít nhất 1 số chia hết cho 2

mà 2 và 3 nguyên tố cung nhau nên a(a-1)(a+1) chia hết cho 2 x 3 hay chia hết cho 6 

vậy a^3 -a chia hết cho 6 mà 6a chia hết cho 6

nên a^3 -a + 6a chia hết cho 6

hay a^3 + 5a chia hết cho 6 ( đpcm)

OoO_Nhok_Lạnh_Lùng_OoO
2 tháng 9 2017 lúc 14:40

cm bằng qui nạp 

thử n=1 ta có n^3+5n = 6 => dúng 

giả sử đúng với n =k 

ta cm đúng với n= k+1 

(k+1)^3+5(k+1) = k^3 +5k + 3k^2 +3k +6 

vì k^3 +5k chia hết cho 6, và 6 chia hết cho 6 nên ta cần cm 3k^2 +3k chia hết cho 6 <=> k^2 +k chia hết cho 2 

mà k(k +1) chia hết cho 2vì nếu k lẻ thì k+1 chẳn => chia hết 

nế k chẳn thì đương nhiên chia hết 

vậy đúng n= k+ 1 

theo nguyen lý qui nạp ta có điều phai chứng minh

Quỳnh Chi
14 tháng 2 2020 lúc 11:16

Trl :

       Bạn kia làm đúng rồi nha!

Hok tốt 

~ nha bạn ~

Khách vãng lai đã xóa

Các câu hỏi tương tự
Trần Lan Anh
Xem chi tiết
__Anh
Xem chi tiết
@Hacker.vn
Xem chi tiết
Linh_Men
Xem chi tiết
Nguyễn Giang
Xem chi tiết
Giang Trần
Xem chi tiết
EnderCraft Gaming
Xem chi tiết
Lonely Boy
Xem chi tiết
Nguyễn Minh Nhật
Xem chi tiết