xác định các hằng số a,b sao cho f(x) chia hết cho g(x)
\(f\left(x\right)=x^4+3x^3-17x^2+\text{ax}+b\) \(v\text{à}\) \(g\left(x\right)=x^2+5x-3\)
Bài 1 :
Tìm tất cả cac số nguyên n để \(2n^2+n-7\) chia hết cho \(n-2\)
Bài 2 : Tìm các hằng số a và b sao cho đa thức f(x) chia hết cho đa thức g(x)
a) \(f\left(x\right)=\left(x^4+ax^2+b\right)\) ; \(g\left(x\right)=\left(x^2-x+1\right)\)
b) \(f\left(x\right)=ax^3+bx^2+5x-50\) ; \(g\left(x\right)=x^2+3x+3\)
Bài 1 :
Tìm tất cả cac số nguyên n để \(2n^2+n-7\) chia hết cho \(n-2\)
Bài 2 : Tìm các hằng số a và b sao cho đa thức f(x) chia hết cho đa thức g(x)
a) \(f\left(x\right)=\left(x^4+ax^2+b\right)\) ; \(g\left(x\right)=\left(x^2-x+1\right)\)
b) \(f\left(x\right)=ax^3+bx^2+5x-50\) ; \(g\left(x\right)=x^2+3x+3\)
Bài 1 :
Gọi f( x ) = 2n2 + n - 7
g( x ) = n - 2
Cho g( x ) = 0
\(\Leftrightarrow\)n - 2 = 0
\(\Rightarrow\)n = 2
\(\Leftrightarrow\)f( 2 ) = 2 . 22 + 2 - 7
\(\Rightarrow\)f( 2 ) = 3
Để f( x ) \(⋮\)g( x )
\(\Rightarrow\)n - 2 \(\in\)Ư( 3 ) = { \(\pm\)1 ; \(\pm\)3 }
Ta lập bảng :
n - 2 | 1 | - 1 | 3 | - 3 |
n | 3 | 1 | 5 | - 1 |
Vậy : n \(\in\){ - 1 ; 1 ; 3 ; 5 }
Để \(2n^2+n-7⋮n-2\) thì \(5⋮n-2\)
Làm nốt
sai r.chờ tí,rảnh t làm lại cho,giờ làm câu 2 đã
Cho 2 đa thức \(f\left(x\right)=2x^2+ax+4\) và \(g\left(x\right)=x^2-5x-b\) (\(a,b\) là hằng số)
Tìm các hệ số \(a,b\) sao cho \(f\left(1\right)=g\left(2\right)\) và \(f\left(-1\right)=g\left(5\right)\)
Ta có \(f\left(1\right)=g\left(2\right)\)
hay \(2.1^2+a.1+4=2^2-5.2-b\)
\(2+a+4\) \(=4-10-b\)
\(6+a\) \(=-6-b\)
\(a+b\) \(=-6-6\)
\(a+b\) \(=-12\) \(\left(1\right)\)
Lại có \(f\left(-1\right)=g\left(5\right)\)
hay \(2.\left(-1\right)^2+a.\left(-1\right)+4=5^2-5.5-b\)
\(2-a+4\) \(=25-25-b\)
\(6-a\) \(=-b\)
\(-a+b\) \(=-6\)
\(b-a\) \(=-6\)
\(b\) \(=-b+a\) \(\left(2\right)\)
Thay \(\left(2\right)\) vào \(\left(1\right)\) ta được:
\(a+\left(-6+a\right)=-12\)
\(a-6+a\) \(=-12\)
\(a+a\) \(=-12+6\)
\(2a\) \(=-6\)
\(a\) \(=-6:2\)
\(a\) \(=-3\)
Mà \(a=-3\)
⇒ \(b=-6+\left(-3\right)=-9\)
Vậy \(a=3\) và \(b=-9\)
Cái Vậy \(a=3\) và \(b=-9\) bạn ghi là \(a=-3\) và \(b=-9\) nha mk quên ghi dấu " \(-\) "
Xác định các hệ số a,b để \(f\left(x\right)=x^4+3x^3-x^2+\left(2a-b\right)x+3b+a\) chia hết cho \(g\left(x\right)=x^2+3x-1\)
f(x) chia hết cho x^2+3x-1
=>(2a-b)=0 và 3b+a=0
=>a=b=0
Cho \(f\left(x\right)=6x^4-7x^3+ax^2+3x+2\) và \(g\left(x\right)=x^2-x+b\).Xác định a,b để f(x) chia hết cho g(x)
Đặt tính chia tìm thương và dư của f(x) cho g(x) ta được:
\(f\left(x\right)=g\left(x\right)\cdot\left(6x^2-x+a-6b-1\right)+\left[\left(a-5b+2\right)+\left(6b^2+b-ab+2\right)\right]\)
Vậy để f(x) chia hết cho g(x) thì dư phải bằng 0, khi đó:
\(\hept{\begin{cases}a-5b+2=0\\6b^2+b-ab+2=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=5b-2\\6b^2+b-b\left(5b-2\right)+2=0\Rightarrow b^2+3b+2=0\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}b=-1\Rightarrow a=-7\\b=-2\Rightarrow a=-12\end{cases}}\)
Vậy các giá trị cần xác định của a, b để f(x) chia hết cho g(x) là (a;b) = (-7;-1) , (-12;-2)
Tìm a và b để đa thức f(x) chia hết cho g(x)
a) \(f\left(x\right)=3x^4+5x^3+ax^2+b+10\)
\(g\left(x\right)=\left(x-1\right).\left(x+2\right)\)
\(M=\left(1+\frac{a}{a^2+1}\right):\left(\frac{1}{a-1}-\frac{2a}{a^3-a^2+a-1}\right)\)
a)tìm điều kiện xác định
b)rút gọn M
Bài 2:
Cho f(x)=\(2x^2+\text{ax}+1v\text{à}g\left(x\right)=x-3\)
tìm a để f(x):g(x) dư 4
\(\text{a) ĐKXĐ: }a\ne1\)
\(\text{b) }M=\frac{a^2+1+a}{a^2+1}:\left[\frac{1}{a-1}-\frac{2a}{a^2\left(a-1\right)+\left(a-1\right)}\right]\)
\(M=\frac{a^2+a+1}{a^2+1}:\left[\frac{1}{a-1}-\frac{2a}{\left(a-1\right)\left(a^2+1\right)}\right]\)
\(M=\frac{a^2+a+1}{a^2+1}:\frac{a^2+1-2a}{\left(a-1\right)\left(a^2+1\right)}\)
\(M=\frac{a^2+a+1}{a^2+1}.\frac{\left(a-1\right)\left(a^2+1\right)}{\left(a-1\right)^2}\)
\(M=\frac{a^2+a+1}{a-1}\)
Xác định các hệ số a, b, c biết \(f\left(x\right)=x^5+x^4-9x^3+ax^2+bx+c\) chia hết cho \(g\left(x\right)=\left(x^2-4\right)\left(x+3\right)\)
xác định các hệ số hữu tỉ a và b sao cho \(f\left(x\right)=x^4+ax^2+b\) chia hết cho \(g\left(x\right)=x^2-x-1\)
Hệ số bất định đi :)
Đặt h(x) là thương trong phép chia f(x) cho g(x)
f(x) bậc 4 g(x) bậc 2 => h(x) bậc 2
=> h(x) có dạng x2 + cx + d
Khi đó f(x) ⋮ g(x) <=> f(x) = g(x).h(x)
<=> x4 + ax2 + b = ( x2 - x - 1 )( x2 + cx + d )
<=> x4 + ax2 + b = x4 + cx3 + dx2 - x3 - cx2 - dx - x2 - cx - d
<=> x4 + ax2 + b = x4 + ( c - 1 )x3 + ( d - c - 1 )x2 + ( -d - c )x - d
Đồng nhất hệ số ta có :
\(\hept{\begin{cases}c-1=0\\d-c-1=a\\-d-c=0\end{cases}};b=-d\)=> \(\hept{\begin{cases}c=1\\d=-1\\a=-3\end{cases}};b=1\)
Vậy a = -3 ; b = 1
Quỳnh ơi, chét dở rồi, tao ghi sai đề mới chết chứ, phải là x^2-x+1 chứ không phải x^2-x-1 '-'
Tương tự :< chưa nghiên cứu kĩ lắm :v
Gỉa sử : \(x^4+ax^2+b=\left(x^2-x+1\right)\left(x^2+cx+d\right)\)
\(\Leftrightarrow x^4+ax^2+b=x^4+cx^3+dx^2-x^3-cx^2-dx+x^2+cx+d\)
\(\Leftrightarrow x^4+ax^2+b=x^4+x^3\left(c-1\right)+x^2\left(d+1-c\right)-x\left(d-c\right)+d\)
Ta có hệ phương trình :
\(\hept{\begin{cases}c-1=0\\d+1-c=a\\d-c=0;d=b\end{cases}}\)xử nốt đy
tìm a,b để đa thứ f(x) chia hết cho đa thức g(x)
\(a.f\left(x\right)=x^4-9x^3+21x^2+ax+b: g\left(x\right)=x^2-x-1\)
\(b.f\left(x\right)=x^4-x^3+6x^2-x+a: g\left(x\right)=x^2-x+5\)
\(c.f\left(x\right)=3x^3+10x^2-5+a: g\left(x\right)=3x+1\)
em chưa cho đa thức f(x) và g(x) nà
a: \(\dfrac{f\left(x\right)}{g\left(x\right)}\)
\(=\dfrac{x^4-9x^3+21x^2+ax+b}{x^2-x-1}\)
\(=\dfrac{x^4-x^3-x^2-8x^3+8x^2+8x+14x^2-14x-14+\left(a+6\right)x+b+14}{x^2-x-1}\)
\(=x^2-8x+14+\dfrac{\left(a+6\right)x+b+14}{x^2-x-1}\)
Để f(x) chia hết cho g(x) thì a+6=0 và b+14=0
=>a=-6 và b=-14
b: \(\dfrac{f\left(x\right)}{g\left(x\right)}=\dfrac{x^4-x^3+5x^2+x^2-x+5+a-5}{x^2-x+5}\)
\(=x^2+1+\dfrac{a-5}{x^2-x+5}\)
Để f(x) chia hết g(x) thì a-5=0
=>a=5