Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Huy Đức
Xem chi tiết
nguyen thi van khanh
8 tháng 2 2017 lúc 20:51

k cho minh giai cho

Nguyễn Giang
Xem chi tiết
Lấp La Lấp Lánh
26 tháng 8 2021 lúc 22:21

\(S=1-3+3^2-3^3+...+3^{98}-3^{99}=\left(1-3+3^2-3^3\right)+3^4\left(1-3+3^3-3^3\right)+...+3^{96}\left(1-3+3^2-3^3\right)=\left(-20\right)+3^4.\left(-20\right)+...+3^{96}.\left(-20\right)=\left(-20\right)\left(1+3^4+...+3^{96}\right)⋮20\)

Nguyễn Lê Phước Thịnh
26 tháng 8 2021 lúc 22:23

Ta có: \(S=1-3+3^2-3^3+...+3^{98}-3^{99}\)

\(=\left(1-3+3^2-3^3\right)+...+3^{96}\left(1-3+3^2-3^3\right)\)

\(=-20\cdot\left(1+...+3^{96}\right)⋮20\)

Trần Thị Thu Hiền
Xem chi tiết
Truong Hoang
Xem chi tiết
Akai Haruma
13 tháng 10 2023 lúc 23:37

Lời giải:

$S=3^1.3^2.3^3....3^{1998}=3^{1+2+3+...+1998}=3^{1997001}$

Ta thấy các ước của $S$ có dạng $3^m$ với $0\leq m\leq 1997001$ với $m$ là số tự nhiên.

Do đó $S\not\vdots 26$ 

Trần Bảo Hân
Xem chi tiết

Bài 1:

\(2^{49}=\left(2^7\right)^7=128^7;5^{21}=\left(5^3\right)^7=125^7\\ Vì:128^7>125^7\Rightarrow2^{49}>5^{21}\)

Bài 2:

\(a,S=1+3+3^2+3^3+...+3^{99}\\ =\left(1+3+3^2+3^3\right)+3^4.\left(1+3+3^2+3^3\right)+...+3^{96}.\left(1+3+3^2+3^3\right)\\ =40+3^4.40+...+3^{96}.40\\ =40.\left(1+3^4+...+3^{96}\right)⋮40\\ b,S=1+4+4^2+4^3+...+4^{62}\\ =\left(1+4+4^2\right)+4^3.\left(1+4+4^2\right)+...+4^{60}.\left(1+4+4^2\right)\\ =21+4^3.21+...+4^{60}.21\\ =21.\left(1+4^3+...+4^{60}\right)⋮21\)

Nguyễn Đức Trí
1 tháng 8 2023 lúc 9:29

Bài 1 :

\(2^{49}=\left(2^7\right)^7=128^7\)

\(5^{21}=\left(5^3\right)^7=125^7\)

mà \(125^7< 128^7\)

\(\Rightarrow2^{49}>5^{21}\)

Bài 2 :

a) \(S=1+3+3^2+3^3+...3^{99}\)

\(\Rightarrow S=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)...+3^{96}\left(1+3+3^2+3^3\right)\)

\(\Rightarrow S=40+40.3^4+...+40.3^{96}\)

\(\Rightarrow S=40\left(1+3^4+...+3^{96}\right)⋮40\)

\(\Rightarrow dpcm\)

b) \(S=1+4+4^2+4^3+...4^{62}\)

\(\Rightarrow S=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...4^{60}\left(1+4+4^2\right)\)

\(\Rightarrow S=21+4^3.21+...4^{60}.21\)

\(\Rightarrow S=21\left(1+4^3+...4^{60}\right)⋮21\)

\(\Rightarrow dpcm\)

Ngô thị huệ
Xem chi tiết
Hường Khuất Thị
Xem chi tiết
Nguyễn Huy Tú
16 tháng 1 2022 lúc 21:39

\(S=1+3+3^2+3^3+...+3^8+3^9\)

\(=1+3+3^2\left(1+3\right)+...+3^8\left(1+3\right)\)

\(=4\left(1+3^2+...+3^8\right)⋮4\)

Nguyễn Lê Phước Thịnh
16 tháng 1 2022 lúc 21:39

\(S=\left(1+3\right)+3^2\left(1+3\right)+...+3^8\left(1+3\right)=4\left(1+3^2+...+3^8\right)⋮4\)

Hường Khuất Thị
16 tháng 1 2022 lúc 21:41

cảm ơn các bạn

 

I love you
Xem chi tiết
Tuquynh Tran
Xem chi tiết
Hồng Nhan
17 tháng 10 2021 lúc 16:54

undefined