ax+bx+cx+a+b+c
\(\left\{{}\begin{matrix}ax^2+bx+c>0\\bx^2+cx+a>0\\cx^2+ax+b>0\end{matrix}\right.\)
cho a, b, c khác 0 và 3ab + 4bc + 5ca = -1. chứng tỏ phương trình (ax^2 + bx + c)(bx^2 + cx + a)(cx^2 + ax + b) = 0 có nghiệm
Cho : bz+ay/x*(-ax+by+cz)=cx+az/y*(ax-by+cz)=ay+bx/z(ax+by-cz)
C/m : ay+bx/c=bz+ay/a=cx+az/b
Cho : bz+ay/x*(-ax+by+cz)=cx+az/y*(ax-by+cz)=ay+bx/z(ax+by-cz)
C/m : ay+bx/c=bz+ay/a=cx+az/b
Bài 1 Tính giá trị biểu thức
A= ax+bx+cx+ay+by+cy+az+bz+ cz biết a+b+c=-3 và x+y+z=-6
B= ax-bx-cx-ay+by+cy-az+bz+ cz biết a-b-c=0 và x-y-z=2016
a) Ta có: A = ax + bx + cx + ay + by + cy + az + bz + cz
= x.(a+b+c) + y.(a+b+c) + z.(a+b+c)
= (a+b+c).(x+y+z) (1)
Lại có: a + b + c = -3 (2)
x + y + z = -6 (3)
Từ (1) ; (2) ; (3) => A = -3.(-6) = 18
Vậy A = 18
b) B = ax - bx - cx - ay + by + cy - az + bz +cz
= x.(a-b-c) - y.(a-b-c) - z.(a-b-c)
= (a-b-c).(x-y-z)
Lại có: a - b - c = 0 ; x - y - z = 2016
=> B = 0.2016 = 0
Vậy B = 0
1.cho x,y thỏa mãn: ax+by=c,bx+cy=a,cx+by=b
CMR:a^3+b^3+c^3=3abc.
2.cho a,b,c khác 0 sao cho:ay-bx/c=cx-az/b=bz-cy/a
CMR:(ax+by+cz)=(x^2+y^2+z^2)(a^2+b^2+c^2)
\(1.\)
Theo đề ra, ta có:
\(ax+by=c\)
\(bx+cy=a\Leftrightarrow ax+by+bx+cy+cx+ay=c+a+b\)
\(cx+by=b\)
\(\Leftrightarrow x\left(a+b+c\right)+y\left(a+b+c\right)=a+b+c\)
\(\Leftrightarrow\left(x+y-1\right)\left(a+b+c\right)=0\)
Ta có: \(x,y\)thỏa mãn \(\Rightarrow a+b+c=0\Rightarrow a+b=\left(-c\right)\)
Khi đó ta có:
\(a^3+b^3+c^3=a^3+3ab\left(a+b\right)+b^3-3ab\left(a+b\right)+c^3\)
\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3=\left(-c\right)^3-3ab\left(-c\right)+c^3=3abc\)\(\left(đpcm\right)\)
Đặt: \(\frac{ay-bx}{c}=\frac{cx-az}{b}=\frac{bz-cy}{a}=G\)
\(\Rightarrow G=\frac{cay-cbx}{c^2}=\frac{bcx-baz}{b^2}=\frac{abz-acy}{a^2}\)
\(\Rightarrow G=\frac{cay-cbx+bcx-baz+abz-acy}{c^2+b^2+a^2}\)
\(\Rightarrow G=0\)
\(\Rightarrow\left(ay-bx\right)^2=\left(cx-az\right)^2=\left(bz-cy\right)^2=0\)
\(\Rightarrow\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)=\left(ax+by+cz\right)^2\)
ax-bx+cx-a-b+c
ax- bx+cx-a-b-c=x(a-b+c)-(a+b-c)= -x(a+b-c)-(a+b-c)=(-x-1)(a+b-c)
ab+ac
ab-ac+ad
ax-bx-cx-dx
a(b+c)-d(b+c)
ac-ad+bc-bd
ax+by+bx+ay
a) \(ab+ac=a.\left(b+c\right)\)
b) \(ab-ac+ad=a.\left(b-c+d\right)\)
c) \(ax-bx-cx-dx=x.\left(a-b-c-d\right)\)
d) \(a.\left(b+c\right)-d.\left(b+c\right)=ab+ac-db-dc=b.\left(a-d\right)+c.\left(a-d\right)=\left(a-d\right).\left(b+c\right)\)
e) \(ac-ad+bc-bd=a.\left(c-d\right)+b.\left(c-d\right)=\left(c-d\right).\left(a+b\right)\)
f) \(ax+by+bx+ay=a.\left(x+y\right)+b.\left(y+x\right)=\left(x+y\right).\left(a+b\right)\)
CHÚC BN HỌC TỐT!!!!!
Cho các số a, b, c khác 0 bất kì sao cho ac + bc + 3ab < 0. Chứng minh phương trình sau luôn có nghiệm: \(\left(ax^2+bx+c\right)\left(bx^2+cx+a\right)\left(cx^2+ax+b\right)=0\)
xy+1-x-y=?
xy-4+2x-2y=?
ax+bx-cx+a+b-c=?
1) \(xy+1-x-y=x\left(y-1\right)-\left(y-1\right)=\left(y-1\right)\left(x-1\right)\)
2) \(=x\left(y+2\right)-2\left(y+2\right)=\left(y+2\right)\left(x-2\right)\)
3) \(=x\left(a+b-c\right)+\left(a+b-c\right)=\left(a+b-c\right)\left(x+1\right)\)